User Tools

Site Tools


T-637-GEDE, Game Engine Architecture, Spring 2015

Basic Info

  • Instructor: Hannes Högni Vilhjálmsson, Marinó Vilhjálmsson
  • Contact: Hannes: Office in Venus floor 2, telephone 559-6323, and email hannes[ ] (open office hours)
  • Contact: Marinó: marinov10[]
  • Theory/Lectures: Mondays 13:10 - 14:45 (M208) and Fridays 10:20-11:55 (M122)
  • Practical/Labs: Thursdays 8:30-10:05 (group 1) and Thursdays 10:20-11:55 (group 2) (M102)
  • Online Forum: Piazza Course Page


The course covers the theory and practice of game engine software development, bringing together topics that range from large-scale software architectures and modern game programming paradigms to the design and implementation of subsystems for rendering, resource management, user interfaces, sound, collision, physics and animation. Through practical lab exercises and group projects, the students will get technical hands-on experience in C++ game development, including the use and development of supporting tool pipelines.


The course text book is "Game Engine Architecture" by Jason Gregory, Second Edition published by AK Peters in 2014. You will be expected to have this book and read the chapters as we work our way through it.

Other books you can loan from library (reserved for this course): Game Programming Gems 1 through 8 (various), GPU Gems 3 (Nguyen), OGRE 3D 1.7 Beginner's Guide (Kerger), OGRE 3D 1.7 Application Development Cookbook (Peterson), CryENGINE 3 Cookbook (Tracy), Unity 3.x Game Development Essentials (Goldstone). You also have access to Game Developer's Magazine (several years).

Intended Learning Outcomes

On completion of the course students are expected to be able to:

  • Explain game engines and their role in game development
  • Compare and evaluate game engines with respect to game development goals and system requirements
  • Sketch the typical components of a run-time game architecture
  • Use industrial standard C++ development tools and version control tools
  • Explain and use data structures that are commonly used in game development
  • Explain what goes on in a typical game loop
  • Design and implement low-level engine systems that deal with start-up/shut-down, memory management, engine configuration, file system, game resources, game loop, rendering loop and interface devices
  • Apply 3D math, covering points, vectors, matrices and quaternions, for solving game world problems
  • Explain what goes on in the rendering and animation pipeline
  • Use programmable shaders
  • Explain the anatomy of a game world, game objects, data-driven game engines and the general construction of a run-time game-play foundation system


During the semester, students should complete three problem sets, one engine presentation and a final project. Problem sets should be done individually, but the engine presentation and final project in groups of up to 3 people in size. Students discuss final project ideas with instructor in week 7, demonstrate the project in week 12 and turn in a report on the project before exams start. Everything that has to be turned in, should arrive no later than at 23:59 on the due date, or else incur 10% penalty for each additional day, including weekends and holidays.

PROB1First Problem Set Weeks 1-3 JAN 2 FEB 9 5%
PRESENTPresentation Existing Game Engine JAN 23 FEB 13 10%
PROB2Second Problem Set Weeks 4-8 MAR 13 MAR 20 5%
PROB3Third Problem Set Weeks 8-11 2%
PROJECTFinal Project “New” Game Engine technology FEB 27 MAR 30 35%
Total 57%

Lab Projects

The practical classes on Thursdays will be in the form of self-guided lab projects with assistance. The focus will be on C++ development using the Ogre 3D graphics engine and related game libraries. These projects will not be graded in a traditional sense, but turning them in to the lab instructor gives you lab points (0, half or full), which in total counts towards 8% of your final grade.

Online Quizzes

Throughout the semester the instructor may provide several online quizzes in MySchool from the theoretical material. These quizzes are meant for students to review recently covered material and will not directly count towards the final grade.

Discussion System

Please use this course discussion system for posting questions regarding labs, problems or projects - or in fact anything you wish related to the course - rather than sending us emails. That way we can build a shared repository of useful questions/answers (you can of course still send us emails, but consider first whether you can post things here instead).

Piazza Course Page

Tentative Schedule

WeekLecture (Mon)Lab (Thu)Lecture (Fri) Due
01 (JAN 12-18) Chapter 1: Introduction "LAB1: Ogre Startup Sequence" Chapter 2: Tools
02 (JAN 19-25) Chapter 7: Game Loop and Time (A)
+ Ogre 3D
"LAB2: Making a scene" Chapter 7: Game Loop and Time (B)
+ Engine Review
03 (JAN 26-01) Chapter 4: 3D Math for Games "LAB3: Applying Math" No Class
04 (FEB 02-08) Chapter 5: Engine Support Systems "LAB4: Resources" Chapter 5: Engine Support Systems (cont.)
Chapter 6: Resources
05 (FEB 09-15) Chapter 6: Resources (cont.)
Chapter 3: Software Engineering
Problem Set 1 Review Engine Presentations PROB1, PRESENT
06 (FEB 16-22) Engine Presentations (cont.) "LAB5: Human Interface Devices" Chapter 8: Human Interface Devices
07 (FEB 23-01) Chapter 10: Rendering (A) "LAB6: Scene Graph" Chapter 10: Rendering (B)
08 (MAR 02-08) Chapter 10: Rendering (C) "LAB7: Programmable Shaders" Chapter 10: Rendering (D)
09 (MAR 09-15) Chapter 10: Shaders "LAB8: Particle Systems" Chapter 14: Gameplay Foundation Systems
10 (MAR 16-22) Status Meetings
Sign Up Here!
“Catching-Up” Lab Session
Paul Debevec Talk at 17:00 in V101 (don't miss it!)
Guest Lecture on Game Networking: Harri Darri at Modio 3D PROB2
11 (MAR 23-29) Guest: Lumenox Games "LAB9: Physics"
Final Project Work
Guest: CCP
12 (MAR 30-05) Final Demos EASTER EASTER
13 (APR 06-12) EASTER Open Exam Review


Please note that there is a 70% attendance requirement for lectures. You must pass this attendance limit in order to take the exam. Please inform the instructor if this is hard for you for some reason such as scheduling conflicts or sick leave.

Participation Grade

Participation grade will be based on: (1) Attendance, (2) Participation in online discussion and (3) Advanced lab work (bonuses and independent stuff). To the extent possible, this will also be based on how actively the student participates in in-class discussion (based on instructor's subjective assessment).


Part of CourseTotal Weight
Participation 5%
Labs 8%
Problem Sets 12%
Engine Presentation 10%
Final Project 35%
Final Written Exam 30%
Total 100%
/var/www/ · Last modified: 2015/03/19 08:54 by marino

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki