
Abstract 
As various functions are accomplished with a 
uniform mechanism of the micro-circuit in the 
neocortex (i.e., the canonical cortical circuit), this 
system will yield clues about general intelligence. 
Though understanding the mechanism of the entire 
brain and its circuits would serve the creation of 
artificial general intelligence, its required 
specifications have not been clarified. In this paper, 
we present a framework for the canonical circuit, 
defining its functions and interface semantics while 
integrating models in neuroscience. In addition, 
candidate models with artificial neural networks 
are evaluated with the specifications. 

1 Introduction 
The whole brain architecture approach is a research 
approach aiming at engineering human-like artificial general 
intelligence (AGI) learning from the entire architecture of 
the brain, where major brain organs such as the neocortex, 
basal ganglia, hippocampus, amygdala, thalamus, and 
cerebellum are implemented as machine learning modules 
that are connected based on neuroscientific findings such as 
mesoscopic connectomes. 
The approach aims to build AGI that acquires the ability to 
solve various problems through learning. The neural circuit 
of the neocortex has a uniform structure, but can exhibit 
various functions according to the nature of the input and 
output. Thus, the neocortex is considered to be the brain 
organ for versatility. In neuroscience, studies on the 
canonical cortical circuit/model of the neocortex have been 
carried out [Harris and Mrsic-Flogel, 2013]. We call the 
hypothetical general machine learning algorithm of the 
neocortical circuit the Neocortical Master Algorithm (NMA 
hereafter), named after the appellation for the ultimate 
learning machine introduced in [Domingos, 2015]. 
In this paper, we identify the input and output that are 
indispensable for NMA based on knowledge in 
neuroscience and machine learning, list machine learning 
algorithms related to NMA, and discuss its I/O and required 
functions. 
Here, we assume cognitive architecture to operate in real 
time, as it is the case in the biological brain. 

2 The NMA framework 
With the advent of artificial neural networks (ANN) based 
on deep learning, there are an increasing number of systems 
that can realize various human cognitive abilities. These 
examples suggest that NMA could be realized by combining 
ANNs, such as the convolutional neural network (CNN) 
capable of information compression and pooling, LSTM 
with a gating mechanism, and reinforcement learning. 

2.1 Reviewing the interface of NMA  
What we propose here as the NMA framework are the I/O 
semantics for the canonical cortical circuit. In humans, the 
neocortex can be decomposed into functional regions, such 
as the primary visual cortex (V1) and supplementary motor 
cortex (SMA). Those regions correspond to NMA units; 
thus, it is important to determine the semantics of their input 
and output. 
While the real neocortex forms a six-layer structure, here we 
regard it to have the five layers {L1, L2/3, L4, L5, L6} in 
our model. The semantics of the input and output of NMA is 
determined as follows. As for output signals, as a specific 
subtype of neurons, output signals and output semantics 
depend on the layer to which the subtype belongs. As for 
input signals, they need to be classified according to the 
nature of the brain organs that transmit them, as the 
integration of signals with multiple semantics may take 
place. 
In the following, we integrate and merge I/O semantics from 
four neuroscientific sources: the Bayesian filter hypothesis 
[Funamizu et al., 2016], the canonical neocortex circuit by 
AGI.io [Kowadlo and Rawlinson, 2015] [Kowadlo and 
Rawlinson, 2016] the Cognitive Consilience [Solari and 
Stoner, 2011], and the interlaminar relationship of the 
neocortex [Hawkins, 2010], as shown in Fig. 1. 

2.2 I/O Semantics of NMA 
Here, signals are classified into state signals and control 
signals, where the former represent a belief in the current 
situation, corresponding to sensor information obtained 
from the external world in real time. State signals are the 
output from L2/3 (Output 3 in Fig.1) to L2/3 in other 
corteces, L4 in the higher cortex, and hippocampus. The 

Reinterpreting The Cortical Circuit 

 
Hiroshi Yamakawa *1, *3, Naoya Arakawa *1, *3, Koichi Takahashi *2, *3, *4 

*1 Dwango Co., Ltd., *2 RIKEN Quantitative Biology Center, *3 The Whole Brain Architecture 
Initiative, *4 Keio University Graduate School of Media and Governance 



"hidden state" signal is a signal with temporal information, 
including a history of a certain state and prediction. It is the 
output from L5 (Output 2) and is transmitted to the basal 
ganglia and thalamus. The "action output" signal is the 
output from another subtype of neurons in L5 to the 
pyramidal tract. 
Of the input signals, those related to states are classified into 
the "state (bottom-up)" signal (Input 3) received from the 
lower cortex, and the "state (top-down)" signal (Input 4) 
received from the higher cortex. The state (top-down) signal 
obtained from L2/3 of the higher cortex and hippocampus is 
mainly the input to L2/3 and further to L6. The state 
(bottom-up) signal (Input 4) obtained from L2/3 of the 
lower cortex is the input to L4 or L2/3. The hidden state 
signal (Input 5) originating from L5 in the lower cortex is 
projected (transmitted) through the thalamus into L4. Here, 
note that the hidden state output from L5 carrying the 
information of the past is not directly sent to the lower 
cortex. 
The "control" signal is the signal related to attention and the 
context outputted from L6 (Output 1) and transmitted to L6 
or L1 in the lower cortex. The control signal obtained from 
L6 in the higher cortex or from the thalamus via the basal 
ganglia is the input to L1 or L6 (Input 1). The control signal 
obtained from the thalamus via the basal ganglia is the input 
to L5 as "hidden state" control output (Input 2). 
In this paper, L4 is used only for information selection, such 
as pooling in visual information processing, the model of 
the external world is held in a recurrent loop between L2/3 
and L5, where temporal hidden states are maintained, and 
the control signal from L6 controls the activity of L5 and 
L2/3 via L1. 

There are ample neuroscientific findings for L2/3 on the 
recognition pathway and computational models to 
implement it. Findings have also been accumulating for the 
basal ganglia loop originating in L5, often assumed to 
realize reinforcement learning (see the "PBWM model" 
section below). As for the input and output of L6, 
neuroscientific findings are still scant, and we found neither 
a hypothesis nor a computational model about its function. 

Two types of top-down signals 
The top-down signal from the higher cortex to the lower 
cortex supports attention, prediction, and motion generation. 
From the viewpoint of NMA, top-down signals are 
categorized into two types: decoding and controlling. 
The decoding signal reproduces (or predicts) representations 
in the lower cortex (a generation model). In Fig. 1, there is a 
top-down path that directly projects the state of the higher 
L2/3 (Output 3) to the lower L2/3 as Input 3. Input 3 also 
receives information from the hippocampus and cerebellum.  
The hippocampus may represent (index) current (or 
replayed) situations and cerebellum-simulated states. In this 
regard, they seem to send contextual information to generate 
representation in the cortex similar to the top-down input 
from Output 3. 
The control signal has two origins. The control signal is 
transmitted top-down as Output 1 from L6 projected to L6 
or L1 in the lower cortex as Input 1. The control signal is 
also generated in the basal ganglia, to which the hidden state 
(Output 2) from L5 is projected, and is sent to the neocortex 
as Input 1 and Input 2. As this signal is merged for various 
information, it cannot be classified into top-down or 
bottom-up. 

 

 
 

Figure 1:  Framework of Neocortical Master Algorithm 
 



Discussion about representation of L2/3 and L5 
As intelligent agents must operate based on incomplete 
information from the external world, the interpretation of 
the world becomes ambiguous. However, neural activity 
cannot simultaneously hold multiple states, not to mention 
enuerating all possibilities. Thus, in order to grasp the 
external world, it is necessary to interpret the current input 
while leaving various possibilities in view of the knowledge 
at hand, which is assumed to be expressed in L2/3 of the 
neocortex in our hypothesis.  
Meanwhile, in order to work towards the outside world, it is 
necessary to exercise consistent interpretation from 
temporally spreaded viewpoints while considering the 
previous input from the world. Such interpretations are 
assumed to be represented in the L5 of the neocortex in our 
hypothesis. 
Since these two aspects are always present, L2/3 and L5 
should share information in NMA. If intelligent agents only 
have expressions like L2/3, they cannot form consistent 
intentional actions. If they only have a representation like 
L5, it will take actions based on biased beliefs. They can 
perform consistent actions while properly grasping the 
world by combining the states expressed in the two forms. 

3 Functions of NMA  

3.1 Function list 
An ideal NMA will have the following functions. 

Hierarchy 
The learner is composed of similar or compatible 
computational layers through which more complex patterns 
are represented. 

Dimension reduction 
The function to approximate a high-dimensional state space 
in a lower-dimensional one while avoiding large 
information loss.  It makes reinforcement learning efficient 
by reducing the search space to realistically occurring states. 

Unsupervised Learning 
Ability to change internal parameters from input sequences 
without teacher or reward signals. Examples include time 
series prediction, disentangling/orthogonalization, and 
categorization. 
When parameters (i.e., synaptic weights) in the neocortex 
are determined through experience, unsupervised learning is 
required because teacher or reward signals are too sparse in 
real life. 

Time series prediction 
Prediction is often required for solving problems and 
survival. Technically, it also includes the estimation of the 
hidden states behind time series. As conventional techniques, 
the hidden-state markov model (HMM) and Kalman filter 
are commonly used. For prediction in the brain, there is a 
hypothesis called predictive coding, for which prediction 
error plays a key role [Rao and Ballard, 1999]. 

Table 1:  List of input and output and functions of existing models 
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Disentangling / Orthogonalization 
In a high dimensional state space, multiple factors generally 
exist in the form of entanglement. It becomes apparent 
especially when dimension reduction is performed. 
Disentangling or orthogonalization is the function to extract 
independent factors. For example, in the ATARI game task, 
the position (e.g., above/below/left/right) of a ball and the 
score can be extracted as independent variables. If 
independent factors are extracted, unexperienced states 
could be inferred from their combinations. 

Categorization 
The ability to classify a continuous state space into a finite 
discretized set. In the brain, nonparametric categorization 
(i.e., the number of categories are not determined) must be 
performed. 
Categorized elements can be associated with symbols and 
form the basis for symbolic concepts and symbols. They 
also provide the discretization necessary for regarding the 
system as an automaton and give the foundation for action 
selection. They are also essential to support negative 
concepts and ontology [Yamakawa, 2014].  

Sparse representation 
Information representation for which only a small number 
of variables have non-zero values while the value of the 
majority is zero. In the neocortex, circuitry containing 
inhibitory cells may implement k-WTA (k-winners take all) 
to realize sparse representation. In engineering, 
regularization terms are often introduced. In a sparse 
representation, categorization becomes easier, because the 
substantive dimensions decrease as the vicinity of each state 
narrows, though the apparent dimensions may increase 
[Yamakawa, 2014]. 

Internal state 
Internal states are essential for working memory required in 
various cognitive functions to hold information in an 
operable form. State holding is also indispensable for 
binding information represented in disparate locations 
(distributed representation in neural circuits). It is presumed 
to be realized with local recurrent circuits or fast synaptic 
plasticity. The function of simply sustaining a state like 
afterimage is referred to as "maintain simple state" (where 
the state may not be discretized) in this paper. 
A system that processes time series with discrete internal 
states is called an automaton, categorized according to the 
type of recognizable formal language.  For instance, a finite 
state machine recognizes regular grammars and a pushdown 
automaton (PDA) recognizes a context-free grammar with a 
nested structure. From the functional viewpoint, a system 
can be regarded as an automaton without discrete internal 
states as long as it handles a discrete time series. The 
function of automatons is assumed in living creatures.  For 
instance, the songs of birds and whales can be represented 
with regular grammar, and most of the grammar of human 
languages can be described with context-free grammar. In 
order for the brain to generate and recognize time series 
with syntax, it must emulate the type of automaton that 
corresponds to the grammar. Furthermore, the ability to 

handle working memory can also be modeled as an 
automaton. 
Recurrent neural networks (RNN) have been proved to be 
theoretically equivalent to the Turing machine, capable of 
emulating arbitrary automata [Siegelmann and Sontag, 
1995]. In practical use, RNN is known to emulate finite 
state machines and PDAs [Horne et al., 1998] [Gers and 
Schmidhuber, 2001]. RNNs with gates such as LSTM and 
GRU can be regarded as realizing a stack in PDA with their 
state-holding gate circuits. For example, LSTM recognizes 
and generates nested tags in XML [Graves, 2013]. 

Learning modulation 
In recent years, global projection of neural modulators has 
also been suggested [Pi et al., 2013]. Such projections may 
control learning coefficients and reinforcement learning in 
the entire neocortex. Such a mechanism could be also 
adopted in NMA. 

Parallelism 
Model parallelism is one of the practical requirements for 
NMA to be scalable to real-world problems, eventually to 
the scale comparable to the brain. Many artificial neural 
network algorithms make use of back-propagation in the 
manner through which the entire network is updated 
synchronously.  However, this synchronization bottleneck 
spoils the natural parallelism that biological neural circuits 
hold. NMA will need to be equipped with the capability to 
update its sub-modules concurrently and assign these 
computational loads to different processing units. 

3.2 Reviewing existing models 
In this section, we examine existing models as candidates 
for NMA. Table 1 compares their I/O and functions. 
PredNet, HTM, and BESOM are inspired by brain 
mechanisms and the stacked autoencoder, the ladder 
network, and CNN are based on engineering ideas. 

Deep Predictive Coding Network (Deep PredNet) 
Deep PredNet is a hierarchical neural network, with the 
top-down signal representing prediction and the bottom-up 
signal prediction error. It is developed by David Cox, et al. 
[Lotter et al., 2016] based on the idea of predictive coding. 
It performs unsupervised learning by prediction, combining 
CNN and LSTM to represent intralaminar coupling. 

Hierarchical Temporal Memory (HTM) 
HTM is a machine learning system inspired by the structure 
of the neocortex and characterized by prediction, sparse 
coding, and hierarchy (see [George and Hawkins, 2009] for 
neuroscientific interpretation and the white paper [Hawkins, 
2010] for its implementation). While the multi-layer model 
may not have been implemented, data clustering has been 
implemented [Balasubramaniam et al., 2015]. 

BESOM 
BESOM (BidirEctional Self-Organizing Map) is a 
computational model of the neocortex that combines a 
hierarchical Bayesian network, self-organizing maps for 
categorization, and an independent component analysis for 
orthogonalization [Ichisugi, 2007]. 



Stacked Autoencoder 
A neural autoencoder functions as a dimension reducer, 
using the input and output layers with the same number of 
neurons and a hidden layer in-between with fewer neurons, 
allowing the input to be compressed in the hidden layer and 
the output to be decompressed. With a stacked autoencoder, 
end-to-end learning is often performed after pre-training 
from the bottom layer. 

Ladder Network 
A semi-supervised learning model that combines an 
unsupervised autoencoder with a supervised learning model 
that performs well in classification, even with relatively 
sparse training data [Rasmus et al., 2015]. 

Convolutional Neural Network (CNN) 
A hierarchical neural network in which convolution layers 
for dimension reduction and pooling layers for information 
selection are alternately stacked, whose layers have 
detectors called filters. Its convolution layer is analogous to 
L2/3 and pooling layer to L4. It is mainly used for image 
processing, for which neurons in a higher layer have wider 
receptive fields. The input from the sensor is processed 
bottom-up and no loop exists in the network. 

Canonical Microcircuits for Predictive Coding (CMPC) 
Friston, et al., who have been formulating neural 
information processing in terms of the free energy principle 
and active inference, analyzed the structure of the neocortex 
from the viewpoint of predictive coding [Bastos et al., 2012]
. 

PBWM model 
The PBWM (Prefrontal cortex and Basal ganglia Working 
Memory) model proposed in [O’Reilly and Frank, 2006] has 
a macro-circuit consisting of the neocortex, basal ganglia, 
and thalamus, enabling operations that require the 
maintenance of states. The timing of the working memory 
update is determined by reinforcement learning in the basal 
ganglia. 

4 Conclusion 
In this paper, we proposed an NMA framework for general 
intelligence corresponding to the canonical cortical circuit.   
We described its I/O semantics and desirable functions. We 
also evaluated candidate ANN models describing the 
neocortical circuit and found that they neither model 
attentional control nor temporal hidden states, even though 
some of them model top-down and bottom-up 
communication. In this, we recognize the need for the 
formulation and implementation of NMA with desirable 
functions, toward which neuroscientists and AI researchers 
should enhance collaboration. 
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