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Abstract

Stewart Wilson introduced the term animat for ar-
tificial animals and outlined the animat path to ar-
tificial intelligence. In this paper the animat path to
artificial general intelligence is explored. A general
computational model is proposed for animats living
in dynamic block worlds, e.g. in the Minecraft en-
vironment. The model uses mechanisms for learn-
ing and decision-making that are common to all an-
imats. Each animat has its own sets of needs, sen-
sors, and motors. It also has its own memory struc-
ture that undergoes continuous development and
constitutes the basis for decision-making. The goal
of the decision-making is always to keep the needs
as satisfied as possible for as long as possible. The
learning mechanisms are of two kinds: (i) structural
learning that adds and removes nodes and connec-
tions of the memory structure; (ii) a local version
of multi-objective Q-learning. The animats of the
model are autonomous and able to adapt to arbi-
trary previously unseen block worlds without any
need for seed knowledge. They adapt by learning
basic skills such as foraging, locomotion, naviga-
tion, and pattern recognition.

1 General intelligence

In psychology, the term general intelligence refers to the way
that a person’s performance on one psychometric task tends
to correlate with her performance on other tasks [Spearman!
1904]. In artificial intelligence, the term tends to be used
more broadly for versatile and autonomous agents [Cegg]
PO0R]. A survey of performance measures relating to general
intelligence in humans and artificial systems can be found in
[Hernandez-Orallo. 2016].

According to the physicist Pieter van Heerden [Heerden!
T968]:

Intelligent behavior is to be repeatedly successful
at satisfying one’s psychological needs in diverse,

observably different, situations on the basis of past
experience.

Interpreted broadly, van Heerden’s characterization of intelli-
gent behavior takes all types of needs in Dorner’s taxonomy
into account: physiological, social, and cognitive [DGrner;
7001]. Note that van Heerden’s characterization applies to all
animal species, not just humans. It is also general in the sense
that it does not rely on human judgement, like the Turing test
does; or on human artifacts, like standard IQ tests do.

Moreover, van Heerden’s characterization harmonizes with
an embodied view of intelligence, whether or not the distinc-
tion between body and mind is maintained. In fact, the ability
of an animal to satisfy its needs depends on the body, the con-
trol system of the body, and the interplay between the two, to
the extent that those notions can be meaningfully separated in
the first place.

The goal of artificial general intelligence is to take the step
from “narrow” Al programs that are tailored for specific tasks
or problem domains to general Al programs with intelligence
“at the human level and beyond” [Pennachin and Goertzell
D007].

Reinforcement learning and in particular Q-learning has
been used in agents where the goal is to accumulate reward
over time [Suffon and Barfo., 1998]. In standard reinforce-
ment learning, the reward signal is one-dimensional; in multi-
objective reinforcement learning, it is multidimensional [Roi-
jiers ef al., 2013]. Sometimes it is straightforward to reduce
multidimensional reward signals into scalars, e.g. money of
several currencies can be converted into money of a single
currency. Sometimes it is harder, e.g. in the case of an ani-
mal that receives a reward signal with an energy and a water
component. No amount of energy can compensate for a lack
of water and vice versa.

Certain agents have a set of needs and receive a (multi-
dimensional) reward signal that measures changes in the sta-
tus of those needs. Such homeostatic agents strive to keep
several internal signals in certain intervals [Konidaris_and
Barto, 2006; [Yoshida, 2017]. For homeostatic agents, the
above-mentioned characterization of intelligent behavior by
van Heerden essentially coincides with the so-called rein-

forcement learning hypothesis [Lettman. 2006]:

Intelligent behavior arises from the actions of an
individual seeking to maximize its received reward



signals in a complex and changing world.

Deep Q-learning combines deep networks with reinforce-
ment learning [CeCun ef al., 2013; Schmidhuber, 2013]. One
of the most prominent examples of this method in the direc-
tion of general intelligence is the generic Atari-game player
that learned to play 31 Atari games at super-human level
[Mnih and others. 2015]. Although deep Q-learning has been
groundbreaking, several issues remain problematic: avoid-
ing catastrophic forgetting; enabling lifelong, one-shot, and
transfer learning; reducing the need for large training vol-
umes; and supporting logical reasoning [Harrigan, 2016]. For
a discussion of some theoretical problems associated with
deep Q-learning, see [Wang and L1, 2016].

Graph structures that develop gradually have been studied,
e.g. in finite automata learning [Angluin, 1980], cascade cor-
relation networks [Fahlman and Lebiere, 19901, and deep net-
work cascades [Angelova ef al., 2013].

Cognitive architectures, e.g. Soar [Laird. 2012], ACT-R
[Anderson ef al.. 20041, and MicroPsi [Bach, 201351, are com-
puter systems that attempt to model aspects of the human
mind, including general intelligence. Agent architectures re-
flect a wider notion that includes systems for artificial intelli-
gence that do not necessarily aim for biological realism, e.g.
OpenCog [Goertzel ef al.. 20141, AERA [Nivel e al.. 2013,
and NARS [Wang and Hammer, 2015].

Animal intelligence has been studied extensively: e.g.,
in comparative psychology and artificial life. The objects
of study in artificial life include artificial evolution, cellular
automata, and particle swarm optimization [Cangfon, 1997;
Tuct ef al.. 2016].

Stewart Wilson introduced the term animat for artificial
animals via the following postulates, quoting from [Wilson]
r9RA]:

e The animal exists in a sea of sensory signals. At any
moment, only some signals are significant; the rest are
irrelevant.

e The animal is capable of actions (e.g., movement) which
change these signals.

e Certain signals (e.g., those attendant on consumption of
food) or their absence (e.g., those relating to pain) have
special status.

e He acts, both externally and internally, so as approxi-
mately to optimize the rate of occurrence of the special
signals.

Wilson also outlined the animat path to Al, which seeks to
create artificial intelligence by modeling animal intelligence
[Wilson, 1990].

In this paper we explore the animat path to artificial general
intelligence. Section [ describes our strategy for construct-
ing a general and autonomous computational model. Section
B describes our constructed model. Section B presents the
prototype implementation Generic Animat of the model and
gives examples of how it learns and makes decisions in the
context of foraging, locomotion, navigation, and concept for-
mation. Section B discusses the scalability of the model and
Section B, finally, draws some conclusions.

2

Figure 1: A Minecraft world with blocks of type “water”, “grass”,
“sand”, etc.

The proposed computational model is partly a continua-
tion of our previous work [Bach, 2015; Nivel ef al.. 2013;
Strannegird ef al., 2015; Strannegird and Nizamani, 2016].
The mechanisms for local Q-learning and structural learning
are novel to the best of our knowledge.

2 Strategy

Our approach to general intelligence is based on the idea
that radically different nervous systems can be formed by the
same underlying biological mechanisms, starting with differ-
ent bodies and experiencing different sensory data. We model
the following generic mechanisms for learning and decision-
making:

1. Decision-making that aims for the satisfaction of multi-
ple physiological needs [Roijers ef al., 2013].

2. Reinforcement learning that strengthens/weakens be-
havior associated with reward/punishment [Niv, 2009].

3. Hebbian learning, captured in the popular phrase “cells
that fire together, wire together” [Baars and Gage, 2010].

4. Sequence learning, which is Hebbian learning with sig-
nal delay taken into account [Bear ef al., 2015].

5. Forgetting, as expressed in the phrase “use it or lose it”

[Wixted. 2004].

In the present setting, the mechanisms 1-5 will only be used
as an inspiration for our computational model. Nevertheless
it is interesting to note that they seem to be ubiquitous in the
animal kingdom [Roijers ef al., 2013; Niv, 2009; Baars and
Gage, 2010; Bear ef al., 2013; Wixted, 2004].

We will define animats by specifying their sets of needs,
sensors, and motors. They will then develop automatically
by means of computational versions of the above-mentioned
generic mechanisms for learning and decision-making. To
model the environments of the animats, we use block worlds,
e.g. worlds in the Minecraft computer game environment
[lohnson ef al., 2016]. The animats can be put into the
“skins” of Minecraft animals such as sheep, rabbits, and
wolves. For instance, we can put the animats into the world
shown in Figure 0 and study them as they strive to satisfy
their needs for company, grass, and drinking water.
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Figure 2: An example of a dynamic graph with some annotation on
the arrows omitted. Note that ACTION nodes may be connected
to 0, 1, 2, or more MOTOR nodes. The ACTION node that is not
connected to any MOTOR node represents passivity.

Using Minecraft as an observatory enables us to study how
different designs of the generic mechanisms affect the sur-
vival of the animats in different environments. Our goal is
to design powerful generic mechanisms that enable a broad
range of animats to survive in a broad range of worlds. Thus
we may approach the challenge of constructing programs
with general intelligence in a gradual fashion.

3 Computational model

This section presents the animats and their environments.

3.1 Worlds
Definition 1 A world is a set of blocks. A block consists of:
e A block type (a natural number).

e A block position (a point in three-dimensional space 7.3 ).

3.2 Dynamic graphs

To model memory structures of animats, we use labeled
graphs. The nodes of the graphs can be identified with for-
mulas of temporal logic [Gabbay et al., 1994]. In particular
we use the binary modal operator SEQ that enables the con-
struction of sequences. The formula p SEQ ¢ is true at time ¢
if pistrue att — 1 and q is true at ¢.

Definition 2 A dynamic graph consists of:

e A set of nodes labeled SENSOR, STATUS, MOTOR,
AND, OR, NOT, SEQ, or ACTION and optionally given
a name.

e A set of arrows, i.e. a binary relation on the set of nodes.
Arrows pointing to ACTION nodes are labeled with two
real values: local Q-values and R-values, as will be ex-
plained in subsection B4.

Figure O shows a dynamic graph.

3.3  Activity

Definition 3 An activity of dynamic graph G is an assign-
ment of values in [0, 1] to the nodes of G, subject to the re-
striction that non-STATUS nodes must be assigned values in

{0,1}.

Figure 3: An example of an activity pattern on a graph. This is
the same graph as in Figure B, but with the optional node names
displayed. Shades of red represent activity levels in [0, 1], with white
representing activity 0 and red activity 1.

Figure B shows an activity. Time is modeled in discrete time
steps or ficks. Input activity is transmitted from the environ-
ment to the SENSOR and STATUS nodes. Activity propa-
gates to the other nodes as expected, except in the case of the
ACTION nodes. The activity of ACTION nodes is specified
by the policy given in Definition I2.

3.4 Animats
Definition 4 An animat consists of:

o A dynamic graph G.

e An activity of G.

o A position: a point in the space 7.5.
The position system used here specifies the six degrees of
freedom for positioning a rigid body in three-dimensional
space: i.e. the three spatial coordinates together with the an-
gles for pitch, roll, and yaw. This enables orienting animats
towards e.g. a food source.
3.5 Top activity

Definition 5 (Perception nodes) A node labeled SENSOR,
AND, OR, NOT, or SEQ is called a perception node.

The following notion plays a key role in both decision-
making and learning:

Definition 6 (Top-active node) Node b € G is top active at
time t if:

e b is a perception node.

e bisactive at t.

o There is no blue arrow that starts in b and ends in some
other perception node b’ that is also active at t.

We use the notation T A(t) for the set of top active nodes at t.

Figure B offers an example, where the red AND node is the
only top-active node. In general, many nodes can be top-
active at the same time. Intuitively, the top-active nodes to-
gether constitute a description of the present situation in terms
of the given memory structure, at the maximum possible level
of detail.



3.6 Local Q-learning
We work in the Multi-Objective Reinforcement Learning

framework and define a local variant of Q-learning that also
takes estimates of Q-value reliability into account.

Definition 7 (Status) The status of the STATUS node i of the
animat A at time t, x; 1, is defined as the input to i at t.

An animat with STATUS nodes water and energy could have
Twater,t = 0.8 and Tepergy,r = 0.6. The following mea-
sure reflects the overall well-being of an animat at a given
moment.

Definition 8 (Vitality) The vitality of the animat A at time t
is defined as

min = ;.
i€eSTATUS

An animat with Zygter¢ = 0.8 and Tepergy,: = 0.6 has vi-
tality 0.6 at ¢. If the vitality reaches 0, we say that the animat
dies. The learning and decision-making mechanisms of the
generic animat were designed with long-term vitality as the
one and only goal.

Definition 9 (Rewards) The reward of the animat A at time
t+ 1 with respect to the STATUS node i is defined as r; 11 =
Tit+1 — Lit-

Definition 10 (Reliability) The reliability of the finite data
set D is defined as Rel(D) = 1/(SD(D) + 1). Here SD is

the standard deviation.

We write a, for the action that is performed at time . Now
we shall define the local Q-values Q);+(b,a) and the local
reliability values R; (b, a).

Definition 11 (Q-values and R-values) Az t = 0 we pro-
ceed as follows. Let

Qi,o(b, a) =0 Cli’ld Ri70(b, Cl) =1

for all perception nodes b, ACTION nodes a, and STATUS
nodes 1.

At t 4+ 1 we proceed as follows. If b ¢ TA(t) or a # ay,
then we let QQ; 1+1(b,a) = Q;4(b,a). Ifb € TA(t), then we
let

Qitr1(b,ar) = Qit(byar) +a- (ripp1 +-A),

where A is
Y overan) @itV a) - Rir(V,a)
Zb/eTA(tJrl) R4 (V' a)

Here o and ~y are parameters for learning rate and discount
rate, respectively. Also let R; 111(b, a) be

Rel({Qi v (bya) :t' <t+1,a=ay andb e TAt)}).

max
a€Actions

Definition 12 (Policy) Fix a real number )\ and let

m(t) = argmax [ min

. (ip + A Q)} ,
a€Actions |1€STATUS

where ) is
Yveraw Qit(b,a) - Riy(b,a)
Y verag Rii(b,a)) '

] —Qi,t(b, ay).

The policy 7 selects actions aimed at keeping the vitality of
the animat as high as possible, for as long as possible. It
weighs up the animat’s present status with expected status
changes in the future. These expectations are in turn weighted
by their estimated reliability. An animat with the two needs
energy and water will be likelier to drink if water is its most
urgent need. On the other hand, if its experience indicates
that it would lose large quantities of energy by doing so, it
might nevertheless refrain from drinking. Thus 7 is different
from policies that first select the most urgent need and then
look for actions that can satisfy that particular need without
taking the other needs into account.

The decision-making algorithm is e-greedy, where € €
[0, 1]. With probability ¢ it explores by activating a random
set of MOTOR nodes (with higher probability for smaller
sets) and with probability 1 — ¢ it exploits by following the

policy 7 (t).

3.7 Structural learning

Definition 13 (Surprise) The surprise of a perception node b
at time t + 1 w.r.t. the STATUS node i is defined as follows:

Zit41(0) = |Qi+1(b; ar) — Qi t(b, ar)|
Definition 14 (Surprised) An animat is surprised at time
t+ 1if z,441(b) > Z, for some STATUS node i and per-
ception node b such that R; +(b,a) > R. Here Z and R are
parameters regulating concept formation.

When the animat is surprised, a new node will be added to the
graph. The surprise indicates that the animat needs a more
fine-grained ontology to be able to identify similar situations
in the future.

Definition 15 (Node candidate) A node candidate is an ex-
pression of the form

e b AND U/, where b,/ € G are perception nodes and b
ANDYV ¢ G, or

o b SEQ Y, where b,b' € G are perception nodes and b
SEQV ¢ G.

The node candidates do not belong to the graph, but they
have local Q-values and R-values associated with different
actions that are initiated and updated just like the local values
of the perception nodes of the graph.

Suppose the animat gets surprised at ¢ + 1. Then the learn-
ing algorithm will consider the possibility of adding a new
node. Let ¢ be a randomly selected STATUS node subject to
surprise at ¢t + 1. First, the algorithm explores the benefit of
adding an AND node. To that end it searches for a node can-
didate b AND b’ such that (i) both b and b’ were top-active at
t, and (ii) the prediction error

|Qi,t+1(b AND b/7 at) — Qi,t(b AND b/, at)|

is minimal. If this prediction error is below a given threshold,
the node b AND ¥’ is added to the graph.

Second, if no AND node is added, the algorithm proceeds
by exploring the benefit of adding a SEQ node. To that end it
searches for a node candidate b SEQ b’ such that (i) b was top-
active at t — 1, (ii) b was top-active at ¢, and (iii) the prediction
error

|Qit+1(b SEQUV ,ar) — Qi (b SEQ UV, ay)]



is minimal. If this prediction error is below a given threshold,
the node b SEQ ¥’ is added to the graph. Whenever a new
node is added to the graph, new node candidates are formed
(by Definition [3).

4 Results

We have implemented the prototype system Generic Animat,
which is available at https://github.com/nils/
animats. The system is a simplification of the model de-
scribed in the previous section. It is integrated with Minecraft
via the Malmo interface [Johnson ef al.. 2016]. To define an
animat an initial animat must be specified. Any animat will
do. For instance, its graph can be a tabula rasa with STATUS,
SENSOR and MOTOR nodes only. It can also be arbitrarily
complex and include, e.g. reflexes that connect directly from
perception nodes to MOTOR-nodes (without passing via AC-
TION nodes). For simplicity we sometimes omit the MOTOR
nodes from the diagrams and draw the ACTION nodes only.

Once it has been initialized, the animat can be put into an
arbitrary world, where it will learn and make decisions au-
tonomously. To measure the performance of an animat in a
given world, we consider its vitality curve that maps vital-
ity against time. The typical shape of the vitality curve is the
square-root sign: The animat starts with high vitality, e.g. as a
result of high vitality at birth. Then its vitality declines while
it explores the world, learns, and consumes resources due to
metabolism. As the animat begins to learn how to replenish
its resources, the vitality curve turns up again. Then it may
stay high if the environment so permits or decline gradually
if the resources are being depleted. Next we will give several
examples illustrating how the animats can learn how to eat,
drink, move, navigate, and conceptualize their worlds.

4.1 Foraging

First let us consider a sheep animat that learns how to eat and
drink. We assume that the sheep has two needs: energy and
water. Its world is shown in Figure B and its initial memory
in Figure B. The interaction dynamics between animat and

Figure 4: A world containing three blocks: grass, sand, and water.

world are described in tables [, D, and B. We ran a simula-

Grass | Sand | Water
red 0 1 0
green 1 0 0
blue 0 0 1

Table 1: Perception of the sheep animat.

tion with the sheep animat. Figure B shows the memory after
convergence and Figure [ shows its vitality curve.

4.2 Locomotion

Here we show a frog animat and a toad animat that learn how
to move. First, let us consider a frog that lives in the world

()] )

(=) () (o) (o)

Figure 5: The memory of the sheep animat at the start. It has
two STATUS nodes: “energy” and “water”’; three SENSOR nodes:
“red”, “blue” and “green”; and four ACTION nodes.

energy | Grass | Sand | Water
eat 0.1 -0.05 | -0.05
drink -0.05 | -0.05 | -0.001
left -0.001 | -0.001 | -0.001
right | -0.001 | -0.001 | -0.001

Table 2: Status changes for the STATUS node “energy”.

water | Grass Sand Water
eat -0.001 | -0.05 -0.05

drink -0.05 -0.05 0.1
left -0.001 | -0.001 | -0.001

right | -0.001 | -0.001 | -0.001

Table 3: Status changes for the STATUS node “water”.
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Figure 6: The memory of the sheep animat after convergence at time
step 20. The displayed arrows indicate preferred actions in response
to each need.

shown in Figure B. Figure B shows the initial memory of the
frog.

The frog consumes energy from metabolism at each time
tick. It can only gain energy by moving to new blocks and
ingesting the food that is available there. It can only move
to a new block by jumping, i.e. by extending both hind legs
simultaneously. The result of a 100-tick simulation is shown
in Figure M and Figure [l

Next, let us consider a toad that lives in the same world as
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Figure 7: Vitality curve for the sheep animat, where vitality is

the minimum of “energy” and “water”. “Control” shows the same

animat performing random actions. Multi-objective reinforcement

learning helps the animat to learn a strategy that lets it survive: al-

ternating between eating grass and drinking water depending on the
most pressing need. “Control” quickly declines and dies.

Figure 8: The frog world. A one-dimensional world of green blocks.

the frog. The toad cannot jump; it can only move forward
by alternately extending its hind legs. It can only extend legs
that are folded and is equipped with proprioception sensors
that indicate which hind legs are folded. The initial memory
of the toad is shown in Figure 2. The result of a 100-tick
simulation is shown in Figure [3 and Figure [4.

4.3 Navigation

Here we show that the generic animat can learn to navigate
like a Braitenberg vehicle. We model a bee that navigates in
a landscape with scenting flowers.

Consider a bee animat living in the world shown in Fig-
ure M3. When the bee visits a flower it collects the nectar,
transforming the flower into grass. Each flower diffuses a
scent into its surroundings. The intensity of the scent from
a flower at a given distance follows the inverse-square law
(intensity o 1/distance®). The attractive and repulsive
flowers have, respectively, positive and negative scents. The
initial memory of the bee is shown in Figure [A.

The energy level of the bee changes depending on three
factors: metabolism, scent intensity and whether nectar is col-
lected.

We ran a 200-tick simulation of the bee in the bee world.
Figure 71 shows a mid-simulation plot of how the bee has
moved in the world so far.

The result of the simulation is shown in Figure IR and Fig-
ure 9.

4.4 Spatial concept formation

Here we illustrate the benefit of structural learning in the case
of AND node addition. Consider a sheep animat that lives
in the world shown in Figure 0. Figures B and 11 show its
memory at start and after convergence, respectively. Figure
2 shows how its vitality develops over time.

ACTION

Figure 9: The initial memory of the frog. The frog has three actions:
it can extend its left hind leg only, its right hind leg only, or both its
hind legs (jump).

ACTION

Figure 10: The memory of the frog after convergence. Convergence
happens at time 3 when the frog has learned to prefer jumping.

4.5 Temporal concept formation

Here we illustrate the benefit of structural learning in the case
of SEQ node addition. Again we consider a sheep that drinks
and grazes, but this time the sheep lives in a world that con-
tains both good water and bad, poisonous water. The prob-
lem is that the sheep cannot differentiate directly between the
good and the bad water with its sensors. By learning that the
bad water always appears in a certain context, in this case
close to sand, the animat can learn to avoid drinking it.

The world is shown in Figure 3. The animat starts with
the same memory as in the previous example (Figure ). It
adds the node “red SEQ blue” the first time a red block is
encountered (one-shot learning). Figure 24 shows its vitality
curve.

5 Scalability

Our model was constructed with the goal of combining full
generality with scalability. In the interest of scalability, it
avoids explicit representation of subsets of sensors (and se-
quences of such subsets) in favor of top-active nodes that rep-
resent partially defined states. In addition, the model was de-
signed so that it only adds nodes reluctantly when it gets suf-
ficiently surprised with respect to reward or punishment. To
control the size of the network further, two additional mecha-
nisms can be added to the present model: forgetting and com-
pression.

5.1 Forgetting

Since the only nodes that can be added are AND nodes and
SEQ nodes, it is sufficient to define forgetting rules for those
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Figure 11: Vitality curve of the frog. The frog has learned how to

jump after three ticks. The sporadic dips in the vitality curve are due

to exploration of non-optimal actions.
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Figure 12: The initial memory of the toad. The toad has two sensors
for proprioception and the same actions as the frog.
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Figure 13: The memory of the toad after convergence. It has learned
how to crawl.

nodes only. When a node is forgotten, it is removed from
the network along with all perception nodes that are above
it. Therefore the forgetting criteria must also take the nodes
above into account. To determine whether a node b should be
removed, two factors can be considered: (i) how often is b ac-
tive and (ii) how similar are the Q-vectors of b and the nodes
above b to those of the two predecessors of b. If b is rarely ac-
tive and if the (Q-vectors mentioned are similar to each other,
those are indications that b should be removed. A rudimen-
tary form of this strategy was developed in [Strannegard ei
al.. 2015].
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Figure 14: Vitality curve. “Animat” is the toad with proprioception

sensors and “Control” is similar but with no proprioception sensors.

Figure 15: The bee world. This world is a two-dimensional 20 X
20 array of blocks with a torus topology. There are three types of
blocks: attractive flowers, repulsive flowers, and grass. There are 12
attractive flowers (yellow dots) and 3 repulsive flowers (red dots).

5.2 Compression

On a standard neural network, it is relatively hard to define
compression operations. On Boolean circuits, on the other
hand, it is relatively easy. For instance, given a Boolean for-
mula A, finding a logically equivalent formula A’ of mini-
mum size can be done by using a SAT-solver. Compression
in the context of dynamic graphs is slightly different, but the
problem is again reducible to a problem that can be handled
by a SAT-solver. This compression can either be lossy (in
the interest of generalization or to comply with size limits) or
lossless, depending on which size limits are imposed. Propo-
sitional reasoning with bounded cognitive resources was con-
sidered in [Strannegard ef al., 2010].

6 Conclusion

We proposed a general computational model for animat learn-
ing and decision-making. Our model is inspired by the idea
that many animals use the same fundamental principles for
learning and decision-making although they have different
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Figure 16: The initial memory of the bee. The bee has two sensors
sensitive to the direction of the scent gradient of nectar from flowers
in its 9x9 blocks neighborhood. One is active if the scent gradient is
to the left of the animat or within 22.5 degrees to the front-right, and
the other is active if the scent gradient is to the right of the animat or
within 22.5 degrees to the front-left. Thus, there is an overlap of the
sensitivity of the left and right sensors and they will both be active
if the scent vector is within +/- 22.5 degrees of the forward direction

of the animat.
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Figure 17: A mid-simulation snapshot of the bee’s trajectory. The ar-
rowhead represents the current position and heading of the bee. The
black line shows the trajectory of the bee from the start. The yellow
dots represent attractive flowers. Green dots represent flowers from
which the bee has collected nectar. Red dots represent repulsive
flowers.

bodies and live in different environments. The model is pri-
marily based on multi-objective reinforcement learning com-
bined with reward signals that reflect variations in the degree
of need satisfaction. We also use a few “homegrown” ingre-
dients: dynamic graphs for memory representation; top activ-
ity for perception; reliability and local Q-values for decision-
making; and surprised-based structural learning for memory
development.

Our animats are capable of starting with an arbitrary dy-
namic graph — e.g. a blank slate — and gradually build a
memory structure that helps them keep their needs satisfied
and survive. The animats are autonomous and fully general
in the sense that they can adapt to arbitrary block worlds.

Our Generic Animat system is still in a prototype phase
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Figure 18: The memory of the bee after convergence. The bee has
learned to turn left when the “left” sensor is active and right when
the “right” sensor is active. An AND node was added and the bee
has learned to move forward when this node is active.
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Figure 19: Vitality curve of the bee. An AND node is added to the
action graph at tick 7. The first five times nectar is collected are at
ticks 7, 17, 53, 64 and 75. The last available nectar is collected at

tick 161.
HM

Figure 20: The green block represents grass that is good to eat and
the blue block water that is good to drink. The middle block repre-
sents a swamp where eating or drinking leads to vomiting and thus
to decreased water and energy levels.

and much work remains to be done in terms of improving the
learning and decision-making mechanisms as well as testing
the system with respect to adaptability and scalability.
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Figure 21: The memory after convergence (at time 25). The labels
on the arrows indicate the preferred actions for the different needs
when the lower node is top active. The AND node that was added
automatically enables the animat to survive.
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Figure 22: ”Animat” is the sheep animat. “Control” is similar, but
its dynamic concept formation is switched off. They both start out
with a blank slate. “Animat” adds an AND node at time step 25. It
manages to survive, while “Control” dies.
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Figure 23: This world is a long path that begins with Water and
Grass blocks, where the animat can learn to eat and drink. Then
come the Poison blocks for the first time. Each Poison block has
a Sand block to its left. This enables animats that are capable of
sequence learning to differentiate between Water and Poison.
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