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Abstract

This paper formalises the notion of context and its
influence in a cognitive hierarchy. Cognition does
not only depend on bottom-up sensor feature ab-
straction, but also relies on contextual information
being passed top-down. Context is higher level in-
formation that helps to predict belief state at lower
levels. We show how a cognitive hierarchy can
model Pearl’s belief propagation in causal trees,
and demonstrate contextual influence in a novel ap-
proach to visually tracking rigid objects.

1 Introduction

There is strong evidence that scaling intelligence necessarily
involves hierarchical structures [Ashby, 1952; Brooks, 1986;
Dietterich, 2000; Albus and Meystel, 2001; Beer, 1966;
Turchin, 1977; Hubel and Wiesel, 1979; Minsky, 1986;
Drescher, 1991; Dayan and Hinton, 1992; Kaelbling, 1993;
Nilsson, 2001; Konidaris et al., 2011; Jong, 2010; Marthi
et al., 2006; Bakker and Schmidhuber, 2004]. A recent ap-
proach [Clark er al., 2016] has addressed the formalisation
of cognitive hierarchies that allow for the integration of dis-
parate representations, including symbolic and sub-symbolic
representations, in a framework for cognitive robotics. Sen-
sory information processing is upward-feeding, progressively
abstracting more complex state features, while behaviours are
downward-feeding progressively becoming more concrete,
ultimately controlling robot actuators.

However, neuroscience suggests that the brain is also sub-
ject to top-down cognitive influences for attention, expecta-
tion and perception [Gilbert and Li, 2013]. Higher level sig-
nals carry important information to facilitate scene interpreta-
tion. For example, the recognition of the Dalmatian, and the
disambiguation of the symbol /A in Figure 1 intuitively show
that higher level context is necessary to correctly interpret the
images'. The human brain is able to make sense of dynamic
3D scenes from light falling on our 2D retina in varying light-
ing conditions. Replicating this ability is still a challenge in
artificial intelligence and computer vision, particularly when
objects move relative to each other, occlude each other, and

"Both of these examples appear in [Johnson, 2010] but are also
well-known in the cognitive psychology literature.

Figure 1: The Dalmation in the top image would probably be
indiscernible without being told what to look for. The am-
biguous symbol A\ on the bottom can be interpreted as either
an “H” or an “A” depending on the word context.

are without texture. Prior, more abstract contextual knowl-
edge is important to help segment images into objects or to
confirm the presence of an object from faint or partial edges
in an image.

In this paper we extend the cognitive architecture formal-
isation in [Clark ef al., 2016] by introducing perceptual con-
text that modifies the beliefs of a child node given the beliefs
of parent nodes. As an example of the operation of context
we prove that Pearl’s [1988] belief propagation in causal trees
can be embedded into our framework. As another example
we demonstrate the use of context in a computer vision task
that involves tracking the pose of multiple occluded feature-
less objects with a 2D camera.

The contributions of this paper are summarised as follows:

1. The formalisation of the notion of top-down influence in
a general cognitive hierarchy. We call the higher level
signals context.

2. The representation of belief propagation in causal trees
[Pearl, 1988] as a cognitive hierarchy with contextual



information.

3. Instantiation of a cognitive hierarchy for the perception
and tracking of objects using context from the system’s
“mental imagery” modelled by a 3D physics simulator.

4. The implementation of the above system using a Baxter
robot to track a scene of multiple, possibly occluded fea-
tureless objects with its inbuilt 2D arm camera.

In the rest of this paper we extend the formalisation of
the cognitive hierarchy with contextual functions as foreshad-
owed [Hengst et al., 2016]. The existing formal meta-model
of cognitive hierarchies [Clark e al., 2016] does not include
a notion of context. To illustrate the functioning of context
we show how causal networks can be interpreted as cognitive
hierarchies, and describe the use of context in a challenging
vision task, tracking the pose of multiple objects.

2 The Architectural Framework

For the sake of brevity the following presentation both sum-
marises and extends the formalisation of cognitive hierarchies
as introduced in [Clark et al., 2016]. We shall, however,
highlight how our contribution differs from the original. The
essence of this framework is to adopt a meta-theoretic ap-
proach, formalising the interaction between abstract cognitive
nodes, while making no commitments about the representa-
tion and reasoning mechanism within individual nodes.

Being a meta-theory agnostic to specific instantiations of
modelling and behaviour mechanisms, detailed complexity
and scalability analysis is not possible. Nevertheless, at the
meta-level two observations can be made. The formal intro-
duction of context in the cognitive hierarchy only adds a con-
text argument to the prediction update but preserves the well
defined update process. Secondly, the decomposition of the
agent’s complete world model and behaviour into a hierar-
chy of nodes presents a significant reduction in complexity.
While we have not addressed how the decomposition can be
achieved other than by design, we have demonstrated that an
arbitrary cognitive hierarchy can be composed into just two
nodes, one being the environment, along with a considerable
increase in complexity [Rajaratnam et al., 2016].

2.1 Motivating Example

As an explanatory aid to formalising the use of context in a
hierarchy we will use the disambiguation of the symbol /\
in Figure 1 as a simple running example. This system can be
modelled as a two layer causal tree updated according Pearl’s
Bayesian belief propagation rules [Pearl, 1988]. The lower-
level layer disambiguates individual letters while the higher-
level layer disambiguates complete words (Figure 2). We as-
sume that there are only two words that are expected to be
seen, with equal probability: “THE” and “CAT”.

There are three independent letter sensors with the middle
sensor being unable to disambiguate the observed symbol /A
represented by the conditional probabilities p(H|/~\) = 0.5
and p(A|/A\) = 0.5. These sensors feed into the lower-level
nodes (or processors in Pearl’s terminology), which we la-
bel as N1, No, N3. The results of the lower level nodes are
combined at N4 to disambiguate the observed word.

Figure 2: Disambiguating the symbol A\ requires context
from the word recognition layer.

Each node maintains two state variables; the diagnostic
support and the causal support (displayed as the pairs of val-
ues in Figure 2). Intuitively, the diagnostic support represents
the knowledge gathered through sensing while the causal sup-
port represents the contextual bias. A node’s overall belief is
calculated by the combination of these two state variables.

While sensing data propagates up the causal tree, the exam-
ple highlights how node N5 is only able to resolve the symbol
/A in the presence of contextual feedback from node Ny.

2.2 Nodes

A cognitive hierarchy consists of a set of nodes. Nodes are
tasked to achieve a goal or maximise future value. They
have two primary functions: world-modelling and behaviour-
generation. World-modelling involves maintaining a belief
state, while behaviour-generation is achieved through poli-
cies, where a policy maps states to sets of actions. A node’s
belief state is modified either by sensing or by the combina-
tion of actions and higher-level context. We refer to this latter
as prediction update to highlight how it sets an expectation
about what the node is expecting to observe in the future.

Definition 1. A cognitive language is a tuple L =
(S, A, T,0,C), where S is a set of belief states, A is a set of
actions, T is a set of task parameters, O is a set of observa-
tions, and C is a set of contextual elements. A cognitive node
is atuple N = (L, TI,\,7,7,5°, 7°) s.t:
o L is the cognitive language for N, with initial belief
state s € S.

e I a set of policies such that for all T € TI, 7 : S — 24,
with initial policy ¥ € L.

e A policy selection function \: 27 — 11, s.t. \({}) = =°.

e A observation update operator 7 : 2° x S — S.



e A prediction update operator~ : 2€ x 2A x S — S.

Definition 1 differs from the original in two ways: the in-
troduction of a set of context elements in the cognitive lan-
guage, and the modification of the prediction update opera-
tor, previously called the action update operator, to include
context elements when updating the belief state.

This definition can now be applied to the motivating exam-
ple to instantiate the nodes in the Bayesian causal tree. We
highlight only the salient features for this instantiation.

Example. Let E = {(x,y) | 0 < z,y < 1.0} be the set of
probability pairs, representing the recognition between two
distinct features. For node N, say (cf. Figure 2), these fea-
tures are the letters “H” and “A” and for N4 these are the
words “THE” and “CAT”. The set of belief states for N is
S2 = {{{d),c) | d,c € E}, where d is the diagnostic sup-
port and c is the causal support. Note, the vector-in-vector
format allows for structural uniformity across nodes. Assum-
ing equal probability over letters, the initial belief state is
({((0.5,0.5)),(0.5,0.5)). For Ny the set of belief states is
S4 = ({d1,da,ds),c) | d1,da,ds,c € E}, where d; is the
contribution of node N ; to the diagnostic support of N 4.

For N4 the context is the causal supports from above, Co =
FE, while the observations capture the influence of the “H”-
“A” sensor, O2={(d) | d € E}. In contrast the observations
for N4 need to capture the influence of the different child di-
agnostic supports, so O4 = {{d1,da,d3) | d1,d2,ds € E}.

The observation update operators need to replace the di-
agnostic supports of the current belief with the observation,
which is more complicated for N 4 due to its multiple chil-
dren, T5({dy, d3, d3}, (d, c)) = <E?:1J;, c). Ignoring the in-
fluence of actions, the prediction update operator simply re-
places the causal support of the current belief with the context

—

from above, so vo({c'}, 0, ((d), ¢)) = ((d), ).

2.3 Cognitive Hierarchy

Nodes are interlinked in a hierarchy, where sensing data is
passed up the abstraction hierarchy, while actions and con-
text are sent down the hierarchy (Figure 3).
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Figure 3: A cognitive hierarchy, highlighting internal interac-
tions as well as the sensing, action, and context graphs.

Definition 2. A cognitive hierarchy is a tuple H =
(./\/',N(),F) S.t:

N is a set of cognitive nodes and No € N is a distin-
8
guished node corresponding to the external world.

e F'is a set of function triples <¢i’j7¢j’i7 Qj,i> € F that
connect nodes N;, N ; € N where:

- ¢ Si— 295 is a sensing function, and
- Y 245 — 27T is a task parameter function.
- 08— 2Ci is a context enrichment function.

e Sensing graph: each ¢, ; represents an edge from node
N;to N and forms a directed acyclic graph (DAG) with
Ny as the unique source node of the graph.

e Prediction graph: the set of task parameter functions
(equivalently, the context enrichment functions) forms a
converse to the sensing graph such that N is the unique
sink node of the graph.

Definition 2 differs from the original only in the introduc-
tion of the context enrichment functions and the naming of the
prediction graph (originally the action graph). The connec-
tion between nodes consists of triples of sensing, task param-
eter and context functions. The sensing function extracts ob-
servations from a lower-level node in order to update a higher
level node, while the context enrichment function performs
the converse. The task parameter function translates a higher-
level node’s actions into a set of task parameters, which is
then used to select the active policy for a node.

Finally, the external world is modelled as a distinguished
node, No. Sensing functions allow other nodes to observe
properties of the external world, and task parameter functions
allow actuator values to be modified, but Ny doesn’t “sense”
properties of other nodes, nor does it generate task parame-
ters for those nodes. Similarly, context enrichment functions
connected to Ny would simply return the empty set, unless
one wanted to model unusual properties akin to the quantum
effects of observations on the external world. Beyond this,
the internal behaviour of N is considered to be opaque.

The running example can now be encoded formally as a
cognitive hierarchy, again with the following showing only
the salient features of the encoding.

Example. We construct a hierarchy H = (N, Ny, F'), with
N ={Nqg,N1,...,Ny}. The function triples in F will in-
clude ¢ o for the visual sensing of the middle letter, and ¢, 4
and g, , for the sensing and context between N and N 4.
The function ¢, , returns the probability of the input being
the characters “H” and “A”. Here ¢ 5(/-\) = {(0.5,0.5)}.
Defining ¢, 4 and o, 5 requires a conditional probability

matrix M = [(1) (1)} to capture how the letters “H” and “A”

contribute to the recognition of “THE” and “CAT”.

For sensing from N 5 we use zeroed vectors to not influence
the diagnostic support components from N1 and N. Hence
9 4(((d), )= {((0,0),n- M -d",(0,0))}, where d" is the
transpose of vector d and 1 is a normalisation constant.

For context we capture how N 4’s causal support and its di-
agnostic support components from N1 and N o influences the
causal support of No. Note, that this also prevents any feed-
back from N 5’s own diagnostic support to its causal support.
50, 04.2({(d1, da, ds), &) = {n - (d - s - c) - M}.



2.4 Active Cognitive Hierarchy

The above definitions capture the static aspects of a system
but require additional details to model its operational be-
haviour. Note, the following definitions are unmodified from
the original formalism and are presented here because they
are necessary to the developments of Section 2.5.

Definition 3. An active cognitive node is a tuple Q =
(N, s, m,a)where: 1) N is a cognitive node with S, 11, and A
being its set of belief states, set of policies, and set of actions
respectively, 2) s € S is the current belief state, m € Il is the
current policy, and a € 2 is the current set of actions.

Essentially an active cognitive node couples a (static) cog-
nitive node with some dynamic information; in particular the
current belief state, policy and set of actions.

Definition 4. An active cognitive hierarchy is a tuple X =
(H, Q) where H is a cognitive hierarchy with set of cognitive
nodes N such that for each N € N there is a corresponding
active cognitive node Q = (N, s,7,a) € Q and vice-versa.

The active cognitive hierarchy captures the dynamic state
of the system at a time instance. Finally, an initial active
cognitive hierarchy is an active hierarchy where each node is
initialised with the initial belief state and policy of the corre-
sponding cognitive node, as well as an empty set of actions.

2.5 Cognitive Process Model

The process model defines how an active cognitive hierarchy
evolves over time and consists of two steps. Firstly, sens-
ing observations are passed up the hierarchy, progressively
updating the belief state of each node. Next, task parameters
and context are passed down the hierarchy updating the active
policy, the actions, and the belief state of the nodes.

We do not present all the definitions here, in particu-
lar we omit the definition of the sensing update operator,
SensingUpdate, as this remains unchanged in our extension.
Instead we define a prediction update operator, replacing the
original action update, that incorporates both context and task
parameters in its update. First, we characterise the updating
of the beliefs and actions for a single active cognitive node.

Definition 5. Let X = (H, Q) be an active cognitive hierar-
chy with H= (N, Ng, F). The prediction update of X with
respect to an active cognitive node Q,= (N, $;,7;,a;) € Q,
written as PredUpdate’ (X', Q,) is an active cognitive hier-
archy X' = (H,Q') where @' = Q\{Q,} U {Q’} and
Q) = (N1, (C,al 50), ) st

e ifthere is no node N, where (¢, .., ;, 0, ;) € F' then:
=7, a0, =m;(s;) and C=0,

e clse:
7 = XN (T) and o}, = 7i(s;),
T = U{wwz(a@) ‘ <¢i,m7¢$7i’gw,i> € F' where
z = (Nwaswvﬂ'a:aax) S Q}
C = Wo,,i(5:) [ (G 0s¥s 4 0,5) € F where

Qz = (NZIH 817 7Ta:1 a:c) E Q}

The intuition for Definition 5 is straightforward. Given a
cognitive hierarchy and a node to be updated, the update pro-
cess returns an identical hierarchy except for the update node.
This node is updated by first selecting a new active policy

based on the task parameters of all the connected higher-level
nodes. The new active policy is applied to the existing belief
state to generate a new set of actions. Both these actions and
the context from the connected higher-level nodes are then
used to update the node’s belief state.

Using the single node update, updating the entire hierarchy
simply involves successively updating all its nodes.

Definition 6. Let X = (H, Q) be an active cognitive hier-
archy with H = (N, N, F) and W be the prediction graph
induced by the task parameter functions in F. The action
process update of X, written PredUpdate(X), is an active
cognitive model:

X' = PredUpdate’(. .. PredUpdate’ (X, Q,,), ... Q,)

where the sequence [Q,,, ..., Q] consists of all active cog-
nitive nodes of the set Q such that the sequence satisfies the
partial ordering induced by the prediction graph V.

Importantly, the update ordering in Definition 6 satisfies
the partial ordering induced by the prediction graph, thus
guaranteeing that the prediction update is well-defined.

Lemma 1. For any active cognitive hierarchy X the predic-
tion process update of X is well-defined.

Proof. Follows from the DAG. O

The final part of the process model, which we omit here, is
the combined operator, Update, that first performs a sensing
update followed by a prediction update. This operation fol-
lows exactly the original and similarly the theorem that the
process model is well-defined also follows.

We can now apply the update process (sensing then predic-
tion) to show how it operates on the running example.

Example. When N senses the symbol |-\, ¢, o returns that
“A” and “H” are equally likely, so T2 updates the diagnos-
tic support of N4 to ({0.5,0.5)). On the other hand N, and
Ny unambiguously sense “C” and “T” respectively, so N 4’s
observation update operator, T4, will update its diagnostic
support components to ((0,1),(0.5,0.5),(0,1)). The nodes
overall belief, (0,1), is the normalised product of the diag-
nostic support components and the causal support, indicating
here the unambiguous recognition of “CAT”.

Next, during prediction update, context from N 4 is passed
back down to Ny, through ¢, 5 and ~y,, updating the causal
support of No to (0,1). Hence, No is left with the belief
state ({{0.5,0.5)),(0,1)), which when combined, indicates
that the symbol -\ should be interpreted as an “A”.

3 Causal Networks as Cognitive Hierarchies

The example in the previous section highlighted the use of
context in a cognitive hierarchy inspired by belief propaga-
tion in causal trees. In this section we extend this example
to the general result that any Bayesian causal tree can be en-
coded as a cognitive hierarchy. We do this by constructively
showing how to encode a causal tree as a cognitive hierar-
chy and proving the correctness of this method with respect
to propagating changes through the tree.

Pearl describes a causal tree as a set of processors where
the connection between processors is explicitly represented



within the processors themselves. Each processor maintains
its diagnostic and causal support, as well as maintaining a
conditional probability matrix for translating to the represen-
tation of higher-level processors. The description of the op-
erational behaviour of causal trees is presented throughout
Chapter 4 (and summarised in Figure 4.15) of [Pearl, 1988].

The cognitive hierarchies introduced here are concerned
with robotic systems and consequently maintain an explicit
notion of sensing over time. In contrast causal networks are
less precise about external inputs and changes over time. As
a bridge, we model that each processor has a diagnostic sup-
port component that can be set externally. Finally, note that
we adopt the convenience notation fj to represent a function
of arbitrary arity that always returns the empty set.

Definition 7. Let {Pi,...P,} be a causal tree. We
construct a corresponding cognitive hierarchy H =
({No,N1,...,Np}, No, F) as follows:

e For processor P; with m children, and diagnos-
tic and causal supports d,c € R", define S; =
{{{dg,d1,....dn),NdE,d1,...,dmn,c € R"}, with
initial belief state s; = ((d,...,d),c). Define O; =
{<dE, di,... ,dm>‘dE, di,...,dn € Rn} and C;=R".

e For processor P; with corresponding cognitive
node N;, define 7i(o,(d,c)) = (¥j.,d,c), and
7 ({¢'},0,(d; c)) = (d, ).

e For each pair of processors P; and P, where P is the
k-th child of P;’s m children (from processor subscript

numbering), and M; is the conditional probability ma-
trix of P;, then define a triple (¢; ;, fp, 0; ;) € I s.t:

- ¢]7z(<d: c)) ={{dg,d1,...,dn)}, where dpy, are
zeroed vectors and dy =1 - My - (T, czd)"

- 0, ;({({dg,dy,...,dm),c)) = {c'}, such that ¢’ =
U (Hh;ék: dp - ) - M.

— where 1 is a normalisation constant for the respec-
tive vectors, and x™ is the transpose of vector .

e For processors Py, with diagnostic support d € R", de-
fine a triple (¢ ;, fo, fo) € F where ¢ ;(so € So) =
{{dg,dz,...,dz)}, where dz is a zeroed vector and
dg € R" is the external input of P;.

While notationally dense, Definition 7 is a generalisation of
the construction used in the running example and is a direct
encoding of Pearl’s causal trees. This construction could be
further extended to poly-trees, which Pearl also considers, but
would require a slightly more complex encoding.

To establish the correctness of this transformation we can
compare how the structures evolve with sensing. The belief
measure of a processor is captured as the normalised product
of the diagnostic and causal supports, BEL(P;) = n - d; - ¢;.
However, for a cognitive node the diagnostic support needs
to be computed from its components. Hence, given the belief
state ((dg,dl,...,dp),c) of an active node @; with m chil-
dren, we can compute the belief as BEL(Q;) = n-[]}~, d;-c.

Lemma 2. Given a causal tree {P1,...P,} and a corre-
sponding cognitive hierarchy H constructed via Definition 7,

then the causal tree and the initial active cognitive hierarchy
corresponding to H share the same belief.

Proof. inspection, i) = -) for each 7.
f. By inspection, BEL(P;) = BEL(Q);) f h O

Now, we establish that propagating changes through an ac-
tive cognitive hierarchy is consistent with propagating beliefs
through a causal tree. We abuse notation here to express the
overall belief of a casual tree (resp. active cognitive hierar-
chy) as simply the beliefs of its processors (resp. nodes).

Theorem 3. Let T be a causal tree and X be the correspond-
ing active cognitive hierarchy constructed via Definition 7,
such that BEL(T) = BEL(X). Then for any changes to
the external diagnostic supports of the processors and corre-
sponding changes to the sensing inputs for the active cogni-
tive hierarchy, BEL(Prop(T)) = BEL(Update(X)).

Proof. Pearl establishes that changes propagated through a
causal tree converge with a single pass up and down the tree.
Any such pass satisfies the partial ordering for the cognitive
hierarchy process model. Hence the proof involves the itera-
tive application of the process model, confirming at each step
that the beliefs of the processors and nodes align. O

Theorem 3 establishes that Bayesian causal trees can be
captured as cognitive hierarchies. This highlights the signif-
icance of extending cognitive hierarchies to include context,
allowing for a richer set of potential applications.

4 Using Context to Track Objects Visually

Object tracking has application in augmented reality, visual
servoing, and man-machine interfaces. We consider the prob-
lem of on-line monocular model-based tracking of multiple
objects without markers or texture, using the monocular cam-
era built into the hand of a Baxter robot. The use of natural
object features makes this a challenging problem.

A basic approach to tackling this problem is to use 3D con-
textual knowledge in the form of a CAD model, from which
to generate a set of edge points (control points) for the ob-
ject [Lepetit and Fua, 2005] . The idea is to track the corre-
sponding 2D camera image points of the visible 3D control
points as the object moves relatively to the camera. The new
pose of the object relative to the camera is found by min-
imising the perspective re-projection error between the con-
trol points and their corresponding 2D image

However, when multiple objects are tracked, independent
CAD models fail to handle object occlusion. We replace the
CAD models by the machinery provided by a 3D physics sim-
ulator. The object-scene and virtual cameras from a simulator
are ideal to model the higher level context for vision. We now
describe how this approach is instantiated as a cognitive hi-
erarchy with contextual feedback. It is important to note that
the use of the physics simulator is not to replace the real-
world, but is used as mental imagery efficiently representing
the spatial belief state of the robot.



Figure 4: The Process update showing stages of the context enrichment function and the matching of contextual information to

the real camera to correct the arm and spatial node belief state.

4.1 Cognitive Hierarchy for Visual Tracking

We focus on world-modelling in a two-node cognitive hier-
archy (Figure 5). The external world node that includes the
Baxter robot, streams the camera pose and RGB images as
sensory input to the arm node. The arm node belief state
s = {p?} U {(p}, c*)|object i}, where p® is the arm pose,
and for all recognised objects ¢ in the field of view of the arm
camera, p!, is the object pose relative to the arm camera, and
¢ is the set of object edge lines and their depth. The objects
in this case include small cubes on a table. Information from
the arm node is sent to the spatial node that employs a Gazebo
physics simulator as mental imagery to model the objects.

A novel feature of the spatial node is that it simulates the
robot’s arm camera as a depth camera, underlining its spa-
tial understanding of the scene. The expected object surfaces
visible to the real camera, segmented into depth clouds by ob-
ject, are passed to the arm node. In turn it uses this contextual
data to adjust poses, and thus track the objects in view.

4.2 Update Functions and Process Update

We now describe the update functions and a single cycle of
the process update for this cognitive hierarchy.

The real monocular RGB arm camera is simulated in
Gazebo with an object aware depth camera with identical
characteristics (i.e. the same intrinsic camera matrix). The
simulated camera then produces depth and an object segmen-
tation images from the simulated objects that corresponds to
the actual camera image. This vital contextual information is
then used for correcting the pose of the visible objects.

The process update starts with the sensing function

g N\
Spatial Gazebo Model: state Behaviour
camera, cubes, Generation
Node table objects action ’ o
(N J
Object and CONTEXT action
Camera Pose Object depth images a
4 N\
Arm Arm pose, edge state Behaviour
depths, in-view - )
Node e e action Generatior
. J
raw images, action
arm pose ‘
4 N\
Node Environment: Blocks, Tables, Baxter
Nu including Sensors, Effectors

Figure 5: Cognitive hierarchy comprising an arm node and
a spatial node. Context from the spatial node is an object
segmented depth image from a simulation of the real camera.

® N, Arm taking the raw camera image and observing all
edges in the image represented as a set of line segments, /.

PNo,arm ({rawlmage}) = {1}

The observation update operator T 4,.,, takes the expected
edge lines ¢’ for each object 7 and transforms the lines to best
match the image edge lines /. The update uses an ICP-like
algorithm to find a corrected pose p’, for each object i relative



to the arm-camera a 2.

7 arm ({1, ¢'|object i}) = {p’,|object i}

The sensing function from the arm to spatial node takes
the corrected pose p, for each object 7, relative to the camera
frame a, and transforms it into the Gazebo reference frame
via the Baxter’s reference frame given the camera pose p®.

¢Arm,Spatial({pa7 <p71;13 Ci>|0bjeCt Z}) = {g;|object 7’}
The spatial node observation update 7 spaziar, updates the

pose of all viewed objects g! in the Gazebo physics simulator.
Note {gZ|object i} C gazebo state.

T spatial ({4} |object i}) = gazebo.move(i, g.) Vi

The update cycle now proceeds down the hierarchy with
prediction updates. The prediction update for the spatial node
7 Spatiai CONSists of predicting the interaction of objects in the
simulator under gravity. Noise introduced during the obser-
vation update may result in objects separating due to detected
collisions or settling under gravity.

Y spatial(gazebo state) = gazebo.simulate(gazebo state))

We now turn to the context enrichment function
OSpatial, Arm that extracts predicted camera image edge lines
and depth data for each object in view of the simulator.

:QSpatial,A'r‘m (gazebo State) = {Ci|0bjeCt Z}

The stages of the context enrichment function 05,441, Arm
are shown in Figure 4. The simulated depth camera extracts
an object image that identifies the object seen at every pixel
location. It also extracts a depth image that gives the depth
from the camera of every pixel. The object image is used to
mask out each object in turn. Applying a Laplacian function
to the part of the depth image masked out by the object yields
all visible edges of the object. A Hough line transform identi-
fies line end points in the Laplacian image and finds the depth
of their endpoints from the depth image, producing c.

Figure 6 highlights how the cognitive hierarchy tracks
cubes in the face of object and arm camera movements.

5 Discussion

There is considerable evidence supporting the existence and
usefulness of top-down contextual information. For example,
incongruent elements in an image are recognised less reli-
ably, demonstrating top-down analyses from the content of a
scene [Biederman et al., 1981]. Cavanagh [1991] showed that
top-down processing speeds the analysis of the retinal image
when familiar scenes and objects are encountered. In cog-
nitive psychology this is related to the context effect, where
environmental factors influence perception, and constructive
perception where other top-down sources of information con-
struct a cognitive understanding of the sensory stimulation.
These observations are further supported by neuroscience,
suggesting that feedback pathways from higher more abstract

The pose of a rigid object in 3D space has 6 degrees of free-
dom, three describing its translated position, and three the rotation
or orientation, relative to a reference pose.

Figure 6: Tracking several cube configurations. Top row:
Gazebo GUI showing spatial node state. 2nd row: match-
ing real image edges in green to simulated image edges in
red. Bottom row: camera image overlaid with edges in green.

processing areas of the brain down to areas closer to the sen-
sors are greater than those transmitting information upwards
[Hawkins and Blakeslee, 2004]. The authors summarise the
process - “what is actually happening flows up, and what you
expect to happen flows down”. Gilbert and Li [2013] argue
that the traditional idea that the processing of visual informa-
tion consists of a sequence of feedforward operations needs
to be supplemented by top-down contextual influences.

Context is consistent with the Gestalt theory of perception
that posits that we understand phenomena by viewing them as
organised and structured wholes rather than the sum of their
constituent parts. Earlier preliminary experiments showed
how a visual perceptual hierarchy built up from edgelets, and
including contextual exceptions of seeing either squares, tri-
angles or circles, could see for example a Kanizsa triangle
7.

In the field of robotics, recent work in online interactive
perception also shows the benefit of predicted measurements
from one level being passed to the next-lower level as state
predictions [Martin and Brock, 2014].

6 Future Work

The cognitive hierarchy [Clark et al., 2016], now with the
addition of context, is being further developed in two ways:

Behaviour Utility Behaviour generation is currently for-
malised in the cognitive hierarchy as a top-down
process, where more abstract nodes select the action
policy of less abstract nodes. To guide this selection
process, the more abstract nodes need access to the cost
or utility of the options available for selection if they are
to choose better behaviours. It is in the agents interest
to not just find a satisficing solution, but a cost-effect, if
not optimal, solution.

To achieve this functionality, we require utility infor-
mation to be passed up the behaviour generation hier-
archy so that a value function can be composed to al-
low for more rational choice of actions. The idea is



Figure 7: A perceptual hierarchy showing that contextual triangles, circles and squares can be perceived as illusionary contours
in images such as those created by Gaetano Kanizsa (1955), or in clutter. The perceptual hierarchy progressively composes
edgelet features into more complex shapes culminating in the triangles, circles, and squares. The column of images on the left
side of the figure shows progressively more complex shapes learned from primitive edgelet features. In the rest of the figure the
top row shows both a circle shape and a triangle shape recognised in the three-‘Pac-Man” like image. The middle row shows a
similar phenomenon for a square. The bottom set of images show a square recognised in extreme clutter of random edgelets.
Source - unpublished experiments from Nobuyuki Morioka and Bernhard Hengst 2009.

to extend the value function recomposition from hierar-
chical reinforcement learning [Dietterich, 2000; Hengst,
2002] to our framework that integrates symbolic and
sub-symbolic representations.

Learning The description of the cognitive hierarchy has
been silent on learning the various world model main-
tenance and behaviour generation functions. It is our
intention to include learning as a capability. As an ex-
ample, reinforcement learning suggests how the predic-
tion update operator, i.e. the state transition function,
and the policy function can be learned, and for the sys-
tem to improve its performance over time. Several any-
time schemes can be used to choose good action policies
given limited resource constraints such as time.

The challenge is to instantiate cognitive hierarchies capa-
ble of developmental behaviour generation to thrive in a par-
ticular environment over the life-time of the agent.

7 Conclusion

This paper formalises the notion contextual feedback in
a cognitive hierarchy, interprets Pearl’s belief updating in
causal trees as such a hierarchy and demonstrates the impor-
tance of context in a challenging vision task. We believe the
notion of context and its influence will play a larger role in
robotics and artificial intelligence research.
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