Abstract

This paper formalises the notion of context and its influence in a cognitive hierarchy. Cognition does not only depend on bottom-up sensor feature abstraction, but also relies on contextual information being passed top-down. Context is higher level information that helps to predict belief state at lower levels. We show how a cognitive hierarchy can model Pearl’s belief propagation in causal trees, and demonstrate contextual influence in a novel approach to visually tracking rigid objects.

1 Introduction

There is strong evidence that scaling intelligence necessarily involves hierarchical structures [Ashby, 1952; Brooks, 1986; Dietterich, 2000; Albus and Meystel, 2001; Beer, 1966; Turchin, 1977; Hubel and Wiesel, 1979; Minsky, 1986; Drescher, 1991; Dayan and Hinton, 1992; Kaelbling, 1993; Nilsson, 2001; Konidaris et al., 2011; Jong, 2010; Marthi et al., 2006; Bakker and Schmidhuber, 2004]. A recent approach [Clark et al., 2016] has addressed the formalisation of cognitive hierarchies that allow for the integration of disparate representations, including symbolic and sub-symbolic representations, in a framework for cognitive robotics. Sensory information processing is upward-feeding, progressively abstracting more complex state features, while behaviours are downward-feeding progressively becoming more concrete, ultimately controlling robot actuators.

However, neuroscience suggests that the brain is also subject to top-down cognitive influences for attention, expectation and perception [Gilbert and Li, 2013]. Higher level signals carry important information to facilitate scene interpretation. For example, the recognition of the Dalmatian, and the disambiguation of the symbol /\ in Figure 1 intuitively show that higher level context is necessary to correctly interpret the images

![Figure 1: The Dalmation in the top image would probably be indiscernible without being told what to look for. The ambiguous symbol /\ on the bottom can be interpreted as either an “H” or an “A” depending on the word context.](image)

are without texture. Prior, more abstract contextual knowledge is important to help segment images into objects or to confirm the presence of an object from faint or partial edges in an image.

In this paper we extend the cognitive architecture formalisation in [Clark et al., 2016] by introducing perceptual context that modifies the beliefs of a child node given the beliefs of parent nodes. As an example of the operation of context we prove that Pearl’s [1988] belief propagation in causal trees can be embedded into our framework. As another example we demonstrate the use of context in a computer vision task that involves tracking the pose of multiple occluded featureless objects with a 2D camera.

The contributions of this paper are summarised as follows:

1. The formalisation of the notion of top-down influence in a general cognitive hierarchy. We call the higher level signals context.

2. The representation of belief propagation in causal trees [Pearl, 1988] as a cognitive hierarchy with contextual

1Both of these examples appear in [Johnson, 2010] but are also well-known in the cognitive psychology literature.
3. Instantiation of a cognitive hierarchy for the perception and tracking of objects using context from the system’s “mental imagery” modelled by a 3D physics simulator.

4. The implementation of the above system using a Baxter robot to track a scene of multiple, possibly occluded featureless objects with its inbuilt 2D arm camera.

In the rest of this paper we extend the formalisation of the cognitive hierarchy with contextual functions as foreshadowed [Hengst et al., 2016]. The existing formal meta-model of cognitive hierarchies [Clark et al., 2016] does not include a notion of context. To illustrate the functioning of context we show how causal networks can be interpreted as cognitive hierarchies, and describe the use of context in a challenging vision task, tracking the pose of multiple objects.

2 The Architectural Framework

For the sake of brevity the following presentation both summarises and extends the formalisation of cognitive hierarchies as introduced in [Clark et al., 2016]. We shall, however, highlight how our contribution differs from the original. The essence of this framework is to adopt a meta-theoretic approach, formalising the interaction between abstract cognitive nodes, while making no commitments about the representation and reasoning mechanism within individual nodes.

Being a meta-theory agnostic to specific instantiations of modelling and behaviour mechanisms, detailed complexity and scalability analysis is not possible. Nevertheless, at the meta-level two observations can be made. The formal introduction of context in the cognitive hierarchy only adds a context argument to the prediction update but preserves the well defined update process. Secondly, the decomposition of the agent’s complete world model and behaviour into a hierarchy of nodes presents a significant reduction in complexity. While we have not addressed how the decomposition can be achieved other than by design, we have demonstrated that an arbitrary cognitive hierarchy can be composed into just two nodes, one being the environment, along with a considerable increase in complexity [Rajaratnam et al., 2016].

2.1 Motivating Example

As an explanatory aid to formalising the use of context in a hierarchy we will use the disambiguation of the symbol /\, in Figure 1 as a simple running example. This system can be modelled as a two layer causal tree updated according Pearl’s Bayesian belief propagation rules [Pearl, 1988]. The lower-level layer disambiguates individual letters while the higher-level layer disambiguates complete words (Figure 2). We assume that there are only two words that are expected to be seen, with equal probability: “THE” and “CAT”.

There are three independent letter sensors with the middle sensor being unable to disambiguate the observed symbol /\ represented by the conditional probabilities \(p(H|/\) = 0.5 \) and \(p(A|/\) = 0.5 \). These sensors feed into the lower-level nodes (or processors in Pearl’s terminology), which we label as \(N_1, N_2, N_3 \). The results of the lower level nodes are combined at \(N_4 \) to disambiguate the observed word.

Definition 1. A cognitive language is a tuple \(\mathcal{L} = (S, A, T, O, C) \), where \(S \) is a set of belief states, \(A \) is a set of actions, \(T \) is a set of task parameters, \(O \) is a set of observations, and \(C \) is a set of contextual elements. A cognitive node is a tuple \(N = (\mathcal{L}, \Pi, \lambda, \tau, \gamma, s^0, \pi^0) \) s.t.:

- \(\mathcal{L} \) is the cognitive language for \(N \), with initial belief state \(s^0 \in S \).
- \(\Pi \) a set of policies such that for all \(\pi \in \Pi \), \(\pi : S \rightarrow 2^A \), with initial policy \(\pi^0 \in \Pi \).
- A policy selection function \(\lambda : 2^T \rightarrow \Pi \), s.t. \(\lambda(\{\}) = \pi^0 \).
- A observation update operator \(\tau : 2^O \times S \rightarrow S \).
• A prediction update operator \(\gamma : 2^C \times 2^A \times S \rightarrow S \).

Definition 1 differs from the original in two ways: the introduction of a set of context elements in the cognitive language, and the modification of the prediction update operator, previously called the action update operator, to include context elements when updating the belief state.

This definition can now be applied to the motivating example to instantiate the nodes in the Bayesian causal tree. We highlight only the salient features for this instantiation.

Example. Let \(E = \{(x, y) \mid 0 \leq x, y \leq 1.0\} \) be the set of probability pairs, representing the recognition between two distinct features. For node \(N_2 \), say (cf. Figure 2), these features are the letters “H” and “A” and for \(N_4 \) these are the words “THE” and “CAT”. The set of belief states for \(N_2 \) is \(S_2 = \{(d, c) \mid d, c \in E\} \), where \(d \) is the diagnostic support and \(c \) is the causal support. Note, the vector-in-vector format allows for structural uniformity across nodes. Assuming equal probability over letters, the initial belief state is \((\langle \langle 0.5, 0.5 \rangle, \langle 0.5, 0.5 \rangle \rangle) \). For \(N_4 \) the set of belief states is \(S_4 = \{(d_1, d_2, d_3) \mid d_1, d_2, d_3 \in E\} \), where \(d_1 \) is the contribution of node \(N_i \) to the diagnostic support of \(N_4 \).

For \(N_2 \) the context is the causal supports from above, \(C_2 = E \), while the observations capture the influence of the “H”-“A” sensor \(O_2 = \{(d) \mid d \in E\} \). In contrast the observations for \(N_4 \) need to capture the influence of the different child diagnostic supports, so \(\Omega_4 = \{(d_1, d_2, d_3) \mid d_1, d_2, d_3 \in E\} \).

The observation update operators need to replace the diagnostic supports of the current belief with the observation, which is more complicated for \(N_4 \) due to its multiple children, \(\tau_2(\{\tilde{d}_1, \tilde{d}_2, \tilde{d}_3\}; (d, c)) = \langle \sum_{k=1}^3 \tilde{d}_k, c \rangle \). Ignoring the influence of actions, the prediction update operator simply replaces the causal support of the current belief with the context from above, so \(\gamma_2(c', 0, \langle \tilde{d}_1, c \rangle) = \langle \tilde{d}_1', c \rangle \).

2.3 Cognitive Hierarchy

Nodes are interlinked in a hierarchy, where sensing data is passed up the abstraction hierarchy, while actions and context are sent down the hierarchy (Figure 3).

Example. We construct a hierarchy \(H = (N, N_0, F) \), with \(N = \{N_0, N_1, \ldots, N_4\} \). The function triples in \(F \) will include \(\phi_{0,2} \) for the visual sensing of the middle letter, and \(\phi_{2,4} \) and \(\phi_{4,2} \) for the sensing and context between \(N_2 \) and \(N_4 \).

The function \(\phi_{0,2} \) returns the probability of the input being the characters “H” and “A”. Here \(\phi_{0,2}(\cdot|\cdot) = \{(0.5, 0.5)\} \).

Defining \(\phi_{2,4} \) and \(\phi_{4,2} \) requires a conditional probability matrix \(M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) to capture how the letters “H” and “A” contribute to the recognition of “THE” and “CAT”.

For sensing from \(N_2 \) we use zeroed vectors to not influence the diagnostic support components from \(N_1 \) and \(N_2 \). Hence \(\phi_{2,4}(\langle d, c \rangle) = \{(\langle 0, 0 \rangle, \eta \cdot M \cdot d^T, \langle 0, 0 \rangle)\} \), where \(d^T \) is the transpose of vector \(d \) and \(\eta \) is a normalisation constant.

For context we capture how \(N_4 \)‘s causal support and its diagnostic support components from \(N_1 \) and \(N_2 \) influence the causal support of \(N_2 \). Note, this also prevents any feedback from \(N_2 \)‘s own diagnostic support to its causal support. So, \(\phi_{4,2}(\langle \tilde{d}_1, d_2, d_3, c \rangle) = \{\eta \cdot (d_1 \cdot d_3 \cdot c) \cdot M\} \).

Figure 3: A cognitive hierarchy, highlighting internal interactions as well as the sensing, action, and context graphs.

Definition 2. A cognitive hierarchy is a tuple \(H = (N, N_0, F) \) s.t.:

• \(N \) is a set of cognitive nodes and \(N_0 \in N \) is a distinguished node corresponding to the external world.
• \(F \) is a set of function triples \(\langle \phi_{i,j}, \psi_{j,i}, \varrho_{j,i} \rangle \in F \) that connect nodes \(N_i, N_j \in N \) where:
 - \(\phi_{i,j} : S_i \rightarrow 2^C \) is a sensing function, and
 - \(\psi_{j,i} : 2^A_i \rightarrow 2^T_i \) is a task parameter function.
 - \(\varrho_{j,i} : S_j \rightarrow 2^C_i \) is a context enrichment function.
• Sensing graph: each \(\phi_{i,j} \) represents an edge from node \(N_i \) to \(N_j \) and forms a directed acyclic graph (DAG) with \(N_0 \) as the unique source node of the graph.
• Prediction graph: the set of task parameter functions (equivalently, the context enrichment functions) forms a converse to the sensing graph such that \(N_0 \) is the unique sink node of the graph.
2.4 Active Cognitive Hierarchy

The above definitions capture the static aspects of a system but require additional details to model its operational behavior. Note, the following definitions are unmodified from the original formalism and are presented here because they are necessary to the developments of Section 2.5.

Definition 3. An active cognitive node is a tuple \(Q = (N, s, \pi, a) \) where: 1) \(N \) is a cognitive node with \(S, \Pi, A \) being its set of belief states, set of policies, and set of actions respectively, 2) \(s \in S \) is the current belief state, \(\pi \in \Pi \) is the current policy, and \(a \in 2^A \) is the current set of actions.

Essentially an active cognitive node couples a (static) cognitive node with some dynamic information, in particular the current belief state, policy and set of actions.

Definition 4. An active cognitive hierarchy is a tuple \(X = (H, Q) \) where \(H \) is a cognitive hierarchy with set of cognitive nodes \(N \) such that for each \(N \in N \) there is a corresponding active cognitive node \(Q = (N, s, \pi, a) \in Q \) and vice-versa.

The active cognitive hierarchy captures the dynamic state of the system at a time instance. Finally, an initial active cognitive hierarchy is an active hierarchy where each node is initialised with the initial belief state and policy of the corresponding cognitive node, as well as an empty set of actions.

2.5 Cognitive Process Model

The process model defines how an active cognitive hierarchy evolves over time and consists of two steps. Firstly, sensing observations are passed up the hierarchy, progressively updating the belief state of each node. Next, task parameters and context are passed down the hierarchy updating the active policy, the actions, and the belief state of the nodes.

We do not present all the definitions here, in particular we omit the definition of the sensing update operator, SensingUpdate, as this remains unchanged in our extension. Instead we define a prediction update operator, replacing the original action update, that incorporates both context and task parameters in its update. First, we characterise the updating of the beliefs and actions for a single active cognitive node.

Definition 5. Let \(X = (H, Q) \) be an active cognitive hierarchy with \(H = (N, N_0, F) \). The prediction update of \(X \) with respect to an active cognitive node \(Q_n = (N_i, s_i, \pi_i, a_i) \in Q \), written as \(\text{PredUpdate}(X, Q_n) \), is an active cognitive hierarchy \(X' = (H, Q') \) where \(Q' = Q \setminus \{Q_n\} \cup \{Q'_n\} \) and \(Q'_n = (N_i, \gamma_i(C, a'_i, s_i), \pi'_i, a'_i) \) s.t:

- if there is no node \(N_x \) where \(\langle \phi_{i,x}, \psi_{x,i}, \theta_{x,i} \rangle \in F \) then: \(\pi'_i = \pi_i, a'_i = \pi_i(s_i) \) and \(C = \emptyset \),
- else:
 \[\pi'_i = \lambda_i(T) \text{ and } a'_i = \pi'_i(s_i), \]
 \[T = \bigcup \{ \psi_{x,i}(a_x) \mid \langle \phi_{i,x}, \psi_{x,i}, \theta_{x,i} \rangle \in F \text{ where } Q_x = (N_x, s_x, \pi_x, a_x) \in Q \}, \]
 \[C = \bigcup \{ \theta_{x,i}(s_x) \mid \langle \phi_{i,x}, \psi_{x,i}, \theta_{x,i} \rangle \in F \text{ where } Q_x = (N_x, s_x, \pi_x, a_x) \in Q \}. \]

The intuition for Definition 5 is straightforward. Given a cognitive hierarchy and a node to be updated, the update process returns an identical hierarchy except for the update node. This node is updated by first selecting a new active policy based on the task parameters of all the connected higher-level nodes. The new active policy is applied to the existing belief state to generate a new set of actions. Both these actions and the context from the connected higher-level nodes are then used to update the node’s belief state.

Using the single node update, updating the entire hierarchy simply involves successively updating all its nodes.

Definition 6. Let \(X = (H, Q) \) be an active cognitive hierarchy with \(H = (N, N_0, F) \) and \(\Psi \) be the prediction graph induced by the task parameter functions in \(F \). The action process update of \(X \), written \(\text{PredUpdate}(X) \), is an active cognitive model:

\[X' = \text{PredUpdate}(\ldots \text{PredUpdate}(X, Q_n), \ldots, Q_0) \]

where the sequence \(\{Q_n, \ldots, Q_0\} \) consists of all active cognitive nodes of the set \(Q \) such that the sequence satisfies the partial ordering induced by the prediction graph \(\Psi \).

Importantly, the update ordering in Definition 6 satisfies the partial ordering induced by the prediction graph, thus guaranteeing that the prediction update is well-defined.

Lemma 1. For any active cognitive hierarchy \(X \) the prediction process update of \(X \) is well-defined.

Proof. Follows from the DAG.

The final part of the process model, which we omit here, is the combined operator, Update, that first performs a sensing update followed by a prediction update. This operation follows exactly the original and similarly the theorem that the process model is well-defined also follows.

We can now apply the update process (sensing then prediction) to show how it operates on the running example.

Example. When \(N_2 \) senses the symbol \(\perp \), \(\phi_{0,2} \) returns that “A” and “H” are equally likely, so \(\tau_2 \) updates the diagnostic support of \(N_2 \) to \(\{(0.5, 0.5)\} \). On the other hand \(N_1 \) and \(N_2 \) unambiguously sense “C” and “T” respectively, so \(N_4 \)’s observation update operator, \(\tau_4 \), will update its diagnostic support components to \(\{(0, 1), (0.5, 0.5), (0, 1)\} \). The nodes overall belief, \((0, 1) \), is the normalised product of the diagnostic support components and the causal support, indicating here the unambiguous recognition of “CAT”.

Next, during prediction update, context from \(N_4 \) is passed back down to \(N_2 \), through \(\phi_{1,2} \) and \(\gamma_2 \), updating the causal support of \(N_2 \) to \((0, 1) \). Hence, \(N_2 \) is left with the belief state \(\{(0.5, 0.5), (0, 1)\} \), which when combined, indicates that the symbol \(\perp \) should be interpreted as an “A”.

3 Causal Networks as Cognitive Hierarchies

The example in the previous section highlighted the use of context in a cognitive hierarchy inspired by belief propagation in causal trees. In this section we extend this example to the general result that any Bayesian causal tree can be encoded as a cognitive hierarchy. We do this by constructively showing how to encode a causal tree as a cognitive hierarchy and proving the correctness of this method with respect to propagating changes through the tree.

Pearl describes a causal tree as a set of processors where the connection between processors is explicitly represented...
within the processors themselves. Each processor maintains its diagnostic and causal support, as well as maintaining a conditional probability matrix for translating to the representation of higher-level processors. The description of the operational behaviour of causal trees is presented throughout Chapter 4 (and summarised in Figure 4.15) of [Pearl, 1988].

The cognitive hierarchies introduced here are concerned with robotic systems and consequently maintain an explicit notion of sensing over time. In contrast, causal networks are less precise about external inputs and changes over time. As a bridge, we model that each processor has a diagnostic support component that can be set externally. Finally, note that we adopt the convenience notation \(f_0 \) to represent a function of arbitrary arity that always returns the empty set.

Definition 7. Let \(\{P_1, \ldots, P_n\} \) be a causal tree. We construct a corresponding cognitive hierarchy \(H = (\{N_0, N_1, \ldots, N_n\}, N_0, F) \) as follows:

- For processor \(P_i \) with \(m \) children, and diagnostic and causal supports \(d, c \in \mathbb{R}^n \), define \(S_i = \{(d_E, d_1, \ldots, d_m, c')|d_E, d_1, \ldots, d_m, c' \in \mathbb{R}^n\} \), with initial belief state \(s_i = \langle (d, \ldots, d), c \rangle \). Define \(Q_i = \{(d_E, d_1, \ldots, d_m, c) \in \mathbb{R}^n\} \) and \(C_i = \mathbb{R}^n \).

- For processor \(P_i \) with corresponding cognitive node \(N_i \), define \(\tau_i(o, (\vec{d}, c)) = \langle \Sigma_{\vec{d} \in o} \vec{d}; c \rangle \), and \(\gamma_i(c, \emptyset, (\vec{d}, c)) = (\vec{d}, c') \).

- For each pair of processors \(P_i, P_j \), where \(P_j \) is the \(k \)-th child of \(P_i \)'s \(m \) children (from processor subscript numbering), and \(M_j \) is the conditional probability matrix of \(P_j \), then define a triple \((\phi_{j,i}, \theta_{j,i}, \eta_{j,i}) \in F \) s.t:
 - \(\phi_{j,i}(\vec{d}, c) = \langle (d_E, d_1, \ldots, d_m) \rangle \), where \(d_h \neq k \) are zeroed vectors and \(d_k = \eta \cdot M_j \cdot \langle \prod_{d'} d' \rangle^T \).
 - \(\theta_{j,i}(\langle (d_E, d_1, \ldots, d_m), c \rangle) = \langle c' \rangle \), such that \(c' = \eta \cdot \langle \prod_{d_h \neq k} d_h \cdot c \rangle \cdot M_j \).
 - where \(\eta \) is a normalisation constant for the corresponding vector, and \(x^T \) is the transpose of vector \(x \).

- For processors \(P_i \), with diagnostic support \(d \in \mathbb{R}^n \), define a triple \((\phi_{0,i}, \theta_{0,i}, \eta_{0,i}) \in F \) where \(\phi_{0,i}(s_0 \in S_0) = \{d_E, d_2, \ldots, d_E\} \), where \(d_E \) is a zeroed vector and \(d_E \in \mathbb{R}^n \) is the external input of \(P_i \).

While notationally dense, Definition 7 is a generalisation of the construction used in the running example and is a direct encoding of Pearl’s causal trees. This construction could be further extended to poly-trees, which Pearl also considers, but would require a slightly more complex encoding.

To establish the correctness of this transformation we can compare how the structures evolve with sensing. The belief measure of a processor is captured as the normalised product of the diagnostic and causal supports, \(BEL(P_i) = \eta \cdot d_i \cdot c_i \).

Lemma 2. Given a causal tree \(\{P_1, \ldots, P_n\} \) and a corresponding cognitive hierarchy \(H \) constructed via Definition 7, then the causal tree and the initial active cognitive hierarchy corresponding to \(H \) share the same belief.

Proof. By inspection, \(BEL(P_i) = BEL(Q_i) \) for each \(i \).

Now, we establish that propagating changes through an active cognitive hierarchy is consistent with propagating beliefs through a causal tree. We abuse notation here to express the overall belief of a causal tree (resp. active cognitive hierarchy) as simply the beliefs of its processors (resp. nodes).

Theorem 3. Let \(T \) be a causal tree and \(X \) be the corresponding active cognitive hierarchy constructed via Definition 7, such that \(BEL(T) = BEL(X) \). Then for any changes to the external diagnostic supports of the processors and corresponding changes to the sensing inputs for the active cognitive hierarchy, \(BEL(Prop(T)) = BEL(Update(X)) \).

Proof. Pearl establishes that changes propagated through a causal tree converge with a single pass up and down the tree. Any such pass satisfies the partial ordering for the cognitive hierarchy process model. Hence the proof involves the iterative application of the process model, confirming at each step that the beliefs of the processors and nodes align.

Theorem 3 establishes that Bayesian causal trees can be captured as cognitive hierarchies. This highlights the significance of extending cognitive hierarchies to include context, allowing for a richer set of potential applications.

4 Using Context to Track Objects Visually

Object tracking has application in augmented reality, visual servoing, and man-machine interfaces. We consider the problem of on-line monocular model-based tracking of multiple objects without markers or texture, using the monocular camera built into the hand of a Baxter robot. The use of natural object features makes this a challenging problem.

A basic approach to tackling this problem is to use 3D contextual knowledge in the form of a CAD model, from which to generate a set of edge points (control points) for the object [Lepetit and Fua, 2005]. The idea is to track the corresponding 2D camera image points of the visible 3D control points as the object moves relatively to the camera. The new pose of the object relative to the camera is found by minimising the perspective re-projection error between the control points and their corresponding 2D image.

However, when multiple objects are tracked, independent CAD models fail to handle object occlusion. We replace the CAD models by the machinery provided by a 3D physics simulator. The object-scene and virtual cameras from a simulator are ideal to model the higher level context for vision. We now describe how this approach is instantiated as a cognitive hierarchy with contextual feedback. It is important to note that the use of the physics simulator is not to replace the real-world, but is used as mental imagery efficiently representing the spatial belief state of the robot.
4.1 Cognitive Hierarchy for Visual Tracking

We focus on world-modelling in a two-node cognitive hierarchy (Figure 5). The external world node that includes the Baxter robot, streams the camera pose and RGB images as sensory input to the arm node. The arm node belief state

\[s = \{ p^a \} \cup \{ (p^a_i, c^i) \mid \text{object } i \} \],

where \(p^a \) is the arm pose, and for all recognised objects \(i \) in the field of view of the arm camera, \(p^a_i \) is the object pose relative to the arm camera, and \(c^i \) is the set of object edge lines and their depth. The objects in this case include small cubes on a table. Information from the arm node is sent to the spatial node that employs a Gazebo physics simulator as mental imagery to model the objects.

A novel feature of the spatial node is that it simulates the robot’s arm camera as a depth camera, underlining its spatial understanding of the scene. The expected object surfaces visible to the real camera, segmented into depth clouds by object, are passed to the arm node. In turn it uses this contextual data to adjust poses, and thus track the objects in view.

4.2 Update Functions and Process Update

We now describe the update functions and a single cycle of the process update for this cognitive hierarchy.

The real monocular RGB arm camera is simulated in Gazebo with an object aware depth camera with identical characteristics (i.e. the same intrinsic camera matrix). The simulated camera then produces depth and an object segmentation images from the simulated objects that corresponds to the actual camera image. This vital contextual information is then used for correcting the pose of the visible objects.

The process update starts with the sensing function

\[\phi_{N_0, Arm}(\{\text{rawImage}\}) = \{l\} \]

The observation update operator \(\tau_{Arm} \) takes the expected edge lines \(c^i \) for each object \(i \) and transforms the lines to best match the image edge lines \(l \). The update uses an ICP-like algorithm to find a corrected pose \(p^a_i \) for each object \(i \) relative...
to the arm-camera a.

$$\tau_{\text{Arm}}(\{t, c_i | \text{object } i\}) = \{p_i | \text{object } i\}$$

The sensing function from the arm to spatial node takes the corrected pose p^i_a for each object i, relative to the camera frame a, and transforms it into the Gazebo reference frame via the Baxter’s reference frame given the camera pose p^c.

$$\phi_{\text{Arm},\text{Spatial}}(\{p^a, \langle p^i_a, c_i \rangle | \text{object } i\}) = \{g^i_0 | \text{object } i\}$$

The spatial node observation update τ_{Spatial}, updates the pose of all viewed objects g^i_0 in the Gazebo physics simulator. Note $\{g^i_0 | \text{object } i\} \subset \text{gazebo state}$.

$$\tau_{\text{Spatial}}(\{g^i_0 | \text{object } i\}) = \text{gazebo.move}(i, g^a_i) \quad \forall i$$

The update cycle now proceeds down the hierarchy with prediction updates. The prediction update for the spatial node γ_{Spatial} consists of predicting the interaction of objects in the simulator under gravity. Noise introduced during the observation update may result in objects separating due to detected collisions or settling under gravity.

$$\gamma_{\text{Spatial}}(\text{gazebo state}) = \text{gazebo.simulate}(\text{gazebo state})$$

We now turn to the context enrichment function $\varrho_{\text{Spatial},\text{Arm}}$ that extracts predicted camera image edge lines and depth data for each object in view of the simulator.

$$\varrho_{\text{Spatial},\text{Arm}}(\text{gazebo state}) = \{c^i | \text{object } i\}$$

The stages of the context enrichment function $\varrho_{\text{Spatial},\text{Arm}}$ are shown in Figure 4. The simulated depth camera extracts an object image that identifies the object seen at every pixel location. It also extracts a depth image that gives the depth from the camera of every pixel. The object image is used to mask out each object in turn. Applying a Laplacian function to the part of the depth image masked out by the object yields all visible edges of the object. A Hough line transform identifies line end points in the Laplacian image and finds the depth of their endpoints from the depth image, producing c^i.

Figure 6 highlights how the cognitive hierarchy tracks cubes in the face of object and arm camera movements.

5 Discussion

There is considerable evidence supporting the existence and usefulness of top-down contextual information. For example, incongruent elements in an image are recognised less reliably, demonstrating top-down analyses from the content of a scene [Biederman et al., 1981]. Cavanagh [1991] showed that top-down processing speeds the analysis of the retinal image when familiar scenes and objects are encountered. In cognitive psychology this is related to the context effect, where environmental factors influence perception, and constructive perception where other top-down sources of information construct a cognitive understanding of the sensory stimulation.

These observations are further supported by neuroscience, suggesting that feedback pathways from higher more abstract

\[\text{Figure 6: Tracking several cube configurations. Top row: Gazebo GUI showing spatial node state. 2nd row: matching real image edges in green to simulated image edges in red. Bottom row: camera image overlaid with edges in green.} \]

6 Future Work

The cognitive hierarchy [Clark et al., 2016], now with the addition of context, is being further developed in two ways:

Behavior Utility Behaviour generation is currently formalised in the cognitive hierarchy as a top-down process, where more abstract nodes select the action policy of less abstract nodes. To guide this selection process, the more abstract nodes need access to the cost or utility of the options available for selection if they are to choose better behaviours. It is in the agents interest to not just find a satisfying solution, but a cost-effect, if not optimal, solution.

To achieve this functionality, we require utility information to be passed up the behaviour generation hierarchy so that a value function can be composed to allow for more rational choice of actions. The idea is
to extend the value function recomposition from hierarchical reinforcement learning [Dietterich, 2000; Hengst, 2002] to our framework that integrates symbolic and sub-symbolic representations.

Learning The description of the cognitive hierarchy has been silent on learning the various world model maintenance and behaviour generation functions. It is our intention to include learning as a capability. As an example, reinforcement learning suggests how the prediction update operator, i.e. the state transition function, and the policy function can be learned, and for the system to improve its performance over time. Several anytime schemes can be used to choose good action policies given limited resource constraints such as time.

The challenge is to instantiate cognitive hierarchies capable of developmental behaviour generation to thrive in a particular environment over the life-time of the agent.

7 Conclusion

This paper formalises the notion contextual feedback in a cognitive hierarchy, interprets Pearl’s belief updating in causal trees as such a hierarchy and demonstrates the importance of context in a challenging vision task. We believe the notion of context and its influence will play a larger role in robotics and artificial intelligence research.

Acknowledgments

This material is based upon work supported by the Asian Office of Aerospace Research and Development (AOARD) under Award No: FA2386-15-1-0005. This research was also supported under Australian Research Council’s (ARC) *Discovery Projects* funding scheme (project number DP 150103035). Michael Thielscher is also affiliated with the University of Western Sydney.

We also thank our anonymous IJCAI 2017 and AGA 2017 reviewers for their insightful and helpful comments on earlier versions of this paper.

Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the AOARD.
References

