
OpenNARS Demonstration of Autonomous Learning and
Decision-Making

Patrick Hammer1, Tony Lofthouse2, Pei Wang3

1 Institute for Software Technology
Graz University of Technology, Inffeldgasse 16b/II, Austria, patrickhammer9@hotmail.com

2 Evolving Solutions Ltd, Newbury, UK, Tony.Lofthouse@GMILab.com
3 Department of Computer and Information Sciences

Temple University, Philadelphia PA 19122, USA, pei.wang@temple.edu
1 Introduction
NARS is a general-purpose reasoning system that is de-
signed to be adaptive and capable of working with insuf-
ficient knowledge and resources. This, together with its
ability to deal with uncertainty, qualifies it to be used
as a core component of autonomous systems. Such sys-
tems often face novel situations they were not prepared
for. Hence, a certain capability to adapt and improvise
can be beneficial. NARS is capable of both, autonomous
learning, and decision-making without requiring super-
vision. The purpose of this demo is to show these ca-
pabilities using our latest NARS implementation, Open-
NARS v1.6.5. The examples we introduce involve unsu-
pervised categorization and recognition of patterns (see
[8]) in sensory channels, knowledge acquisition and pro-
cedural learning based on a stream of experience, and
goal-oriented behaviours based on learned knowledge.
Also, aspects of the implications of autonomous decision-
making under the Assumption of Insufficient Knowledge
and Resources (AIKR), which is also described in [7], are
demonstrated.

2 System Description
The system’s experience can be interpreted as a stream
of sentences that enter the system at specific times,
which we call events. Over the lifetime of the system,
an unspecified amount of such sentences enters the sys-
tem. Considering a set of events, different patterns (both
spatial and temporal) can be extracted and predictive
statements derived. Hereby, the extraction of patterns
happens through inference, by combining two statements
and generating one or multiple resulting statements, de-
pending on the amount of inference rules that apply to
the structure of the premises. Statements themselves
can be about anything: from a single observed event to
an abstract property or pattern. Inference in NARS is
not only responsible for deducing what follows from hy-
potheses, but also to build them in the first place. In
the systems memory, all such statements end up in the
related container we call “concept”, and these concepts
are then what the system keeps from its experience, they
become the storage elements that summarize what the
system experienced. Due to the assumption of insuffi-

cient knowledge and resources, only a subset of concepts
can be retained. Determining which concepts to retain
and which to remove is the role of the control system and
forms part of the attention mechanism as also described
in [4] and [2].

2.1 Memory
Memory in NARS describes the data structure within
the system in which statements are stored. It supports
both, the mentioned “concept” containers as well as a
forgetting mechanism to obey AIKR.

Concepts
NARS’ concept-centric memory model works this way:
it assigns a container, called Concept, to each term in the
system. All statements are stored in the concept their
term refers to. Additionally, concepts are linked to other
concepts based on the sub- and super-terms of the term
they are referred by. Through this, statements in the
system have their individual Semantic Neighbourhood,
which is illustrated by the following picture:

concept1
Statements

Memory concept2
Statements

concept3
Statements

Forgetting
Constant memory capacity can only be maintained when
statements, and concepts are removed from memory to
make space for new data items (Absolute Forgetting).
This is realized by removing the lowest priority item
when the maximum capacity is reached. Here, the pri-
ority of statements starts with an initial value, and con-
cept priority partly reflects the priorities of the state-
ments that are stored in it. Note that the initial pri-
ority value is decided by different criteria, such as the
total amount of evidence w that is summarized by the



statement, the premise statement priorities and the syn-
tactical complexity of the statement. Additionally the
priority of all data items is decaying over time (Relative
Forgetting), by their Durability value as described in [2].

2.2 Control Mechanism
The control mechanism describes the strategy accord-
ing to which two statements are selected for matching
against inference rule preconditions to potentially pro-
duce new conclusions.

Probabilistic Inference Control
In NARS, data item selection is done in a probabilistic
manner. Elements of higher priority have higher chance
to be selected, and additionally new statements increase
the priorities of the concept they are stored in. Both
together leads to the effect that re-observed patterns in
experience can not only stabilize in memory, but also will
be favourably selected in the future in similar situations.
This is a property whose importance for perception and
cognition in general is also argued in [3].

Working Cycle
Each inference step consists of:

1. Probabilistically select a concept C from memory.
2. Probabilistically select a first premise T from it.
3. Probabilistically select a concept D in the Semantic

Neighbourhood of C.
4. Select the second premise B of highest confidence c

from D.
5. Apply inference with T and B as premises, gener-

ating result statements.

In total, we can now see the entire picture of the
system, with having the working cycle selecting two
premises from two adjacent concepts (semantic neigh-
bours), and applying NAL inference rules (see [5]) that
match the structure of the premises. The results of this
derivation are then fed back into a buffer, and processed
thereafter, ending in existing concepts, or in new ones,
depending on whether a concept for the derived state-
ment term already exists.

concept1
tasks

Memory

Inference

Buffer

Input

concept2
tasks

concept3
tasks

3 Pattern Recognition under AIKR

If an agent is to act in an environment it must be able to
sense that environment. The following provides a brief
explanation of how perception is encoded within the sim-
ulation. Given a sequence of events ei with their specific
truth values, the question arises: to what extent is a cer-
tain composition of these events observed? The follow-
ing figure shows two patterns: an observed pattern and
a matched pattern. The screenshot shows one possible
encoding of these patterns in Narsese (the OpenNARS
input language). Perceived patterns are often incomplete
or uncertain and can represent different things. Hence,
one challenge for the system is to determine to what ex-
tent the observed pattern matches known patterns, in
the systems experience. Since not all possible combi-
nations can be stored and exhaustively matched, there
are many factors that determine how much resources are
spent on specific patterns: Is it a frequently occurring
pattern, how important is the related concept, is it re-
lated to the fulfilment of a goal, is it temporally relevant,
etc.

3.1 Microworld

Microworld is a simulation with multi-dimensional retina
input. In this simulation, the agent is required to catch
green objects in a 2D world. It should avoid red objects
entirely by seeing connections between what it observes,
the actions it takes, and the fulfilment of its goals. The
only goal here is to catch green objects while avoiding red
objects. Whenever a collision with a green object hap-
pens, positive reward is obtained, and for collisions with
red objects, negative reward. Here, the system demon-
strates its ability to work with variable time pressure,
and has to deal with different situations in a case-by-case
manner (see [6]), largely based on learned and constantly
updated procedural knowledge.



Problem Encoding
Here we use a 1-dimensional vision array, where pixel
input is given by ({pixeli} → [on]), which corresponds
to “pixel i is on”. The reward representation is achieved
with goal event (SELF → [rewarded]), but with hav-
ing a negative belief event, ¬(SELF → [rewarded]) as
input when a collision with a red object happens, while
the event enters without negation on collision with a
green object. The agent is automatically moving for-
ward in each step, however can steer by the two oper-
ations ((∗, SELF ) → l̂eft) and ((∗, SELF ) → r̂ight).
The semantics of these statements intuitively match our
intended usage, but can be read in more detail in [5].
Results

Green objects preferred?

Trials Time per Trial
θ = g

r on average
g... Green objects eaten
r... Red objects eaten

30 15 Minutes 1.63
The simulation ran with 19 frames per second on aver-
age, leading to 5 seconds for the agent to move from top
to bottom and about 7 seconds from left to right. The
objects were randomly re-placed whenever they collided
with the agent.
Interpretation
In this example, the amount of green and red objects,
spawning at random positions, is equal, and also their
sizes are equal. To get a feeling for θ: a random moving
agent would have θ converge to 1.0 as the amount of red
and green objects it collides with will even out in the
long run. With θ = 1.63, NARS however demonstrates
a strong tendency towards colliding with green objects
within just fifteen minutes of learning time, throughout
the 30 attempted trials.

4 Discussion
This demonstration shows the capability of OpenNARS
to act as an autonomous learning and decision-making

system. The Microworld example shows many of the
capabilities required by an autonomous system such
as: perception, reasoning, decision-making and goal-
orientated behaviour. Whilst the Microworld simulation
is simple in nature, the challenges can be scaled to more
complex environments using the ability of OpenNARS
to deal with uncertain and contradictory information,
along with the ability to work under the assumption
of insufficient knowledge and resources. It also shows
how OpenNARS can act as an autonomous system with
goal-oriented behaviour driven by user supplied intrin-
sic goals. Whilst this is a proof of concept for an au-
tonomous system design our belief is that ‘safe’ AGI
is developed through an education process rather than
solely providing intrinsic goals or drives [1]. This demon-
stration is run using OpenNARS version 1.6.5. This is a
development branch where the improvements of other
versions have been retrospectively added, also featur-
ing self-control abilities as described in [9]. It is single
threaded, except for the GUI, and has better inference
performance than the other branches. Additionally, us-
ing multiple instances of OpenNARS appears to be a
more effective way to scale within a distributed environ-
ment rather than using a distributed graph. Research in
this area is ongoing.

5 Acknowledgements
The authors thank the anonymous reviewers for their
helpful comments and suggestions.

References
[1] Bieger J, Thórisson K, Wang P: Safe Baby AGI,

Proceedings AGI-15 (2015)
[2] Hammer P, Lofthouse T, Wang P: The OpenNARS

Implementation of the Non-Axiomatic Reasoning
System, Proceedings AGI-16 (2016)

[3] Hofstadter D., The parallel terraced scan: an op-
timization for an agent-oriented architecture, Intel-
ligent Processing Systems, 1997. ICIPS ’97. 1997
IEEE

[4] Wang P: Rigid Flexibility – The Logic of Intelli-
gence, Springer (2006)

[5] Wang P: Non-Axiomatic Logic: A Model of Intelli-
gent Reasoning, World Scientific, Singapore (2013)

[6] Wang P: Solving a Problem With or Without a
Program, Journal of Artificial General Intelligence
3(3):43-73 (2013)

[7] Wang P, Hammer P: Assumptions of Decision-
Making Models in AGI, Proceedings AGI-15 (2015)

[8] Wang P, Li X: Different Conceptions of Learning:
Function Approximation vs Self-Organisation, Pro-
ceedings AGI-16 (2016)

[9] Wang P, Li X, Hammer P: Self-Awareness and Self-
Control in NARS, Proceedings AGI-17 (2017)


