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Our strategy for AGI 

• Humans are animals. So human intelligence is a special case of 
animal intelligence.  
 

• Eventually we want to reach human level AI, but first we have the 
challenge of X-level AI for other animals X.  
 

• We are not done with X = insects. Going directly for X = human is 
like going for K2 when you are unable to climb a hill. 
 

• Stewart Wilson 
– Coined the term animat = artificial animal 
– Wrote the paper The Animat Path to AI 

 
• We follow this path aiming for general AI 



Intelligent behavior 

Intelligent behavior is to be repeatedly 
successful at satisfying one’s […] needs in 
diverse, observably different, situations on the 
basis of past experience 

 

    van Heerden, 1968 

Applies to all animals with needs, not just humans! 
Does not mention the notion of task. 



Animal needs 

• Water (osmoceptors) 
• Energy (insulin receptors) 
• Protein (amino acid receptors) 
• Oxygen (CO2 receptors) 
• Integrity (nociceptors) 
• Sleep (melatonin receptors) 
• Proximity (pheromone receptors) 
• Reproduction (sexual hormone receptors) 
• Affiliation (oxytocin receptors) 

Some animal needs and their associated interoceptors 



Animal intelligence 

• Nature is full of animals that are intelligent in 
van Heerden's sense, e.g. mammals, birds, 
reptiles, fish, crustaceans, and insects! 



Mechanisms of animal intelligence 

• Decision-making aimed at need satisfaction  

• Reinforcement learning that 
strengthens/weakens behavior associated with 
reward/punishment  

• Hebbian learning: ”if they fire together, they 
wire together”  

• Sequence learning, which is a form of Hebbian 
learning with one of the signals delayed  

• Forgetting: ”use them or lose them”  



Which animal species use these 
mechanisms? 



Almost all! 



This suggests that 

• Animals have individual anatomies: 

– needs 

– sensors 

– motors 

– memory 

 

• They also have generic mechanisms for 
learning and decision-making. 

Model the mechanisms, not the biological implementations! 



Generic animat idea 

• Let us build an artificial animal with a 
configurable initial "brain" and generic 
mechanisms for learning and decision-making!  

 



Dynamic graphs 

• We use dynamic graphs for modeling "brains" 

 

• A dynamic graph consists of  

– A set of nodes that can be of type SENSOR, 
MOTOR, AND, OR, NOT, SEQ, ACTION, or NEED. 
Each node also has a unique name. 

– Labeled edges 



A dynamic graph 

SENSOR SENSOR SENSOR SENSOR SENSOR NEED NEED 

MOTOR MOTOR MOTOR MOTOR MOTOR MOTOR 

ACTION 

AND 

ACTION ACTION 



The same graph with names shown 

solid liquid blue green red water energy 

eat drink up down left right 

ACTION 1 

water 

ACTION 2 ACTION 3 



Input 

• SENSOR nodes receive inputs from {0,1} 

 

• NEED nodes receive input from [0,1]. 

 



Activity propagation 

solid liquid blue green red energy 

eat drink up down left right 

water 

water 

ACTION 1 ACTION 2 ACTION 3 



Worlds 

• A block consists of 

– A block type, e.g. sand, water, or grass 

– A position in space 

 

• A world is a set of blocks. 



A world 



Animats 

• An animat consists of 

– A dynamic graph G (the animat's "brain") 

– An activity on G 

– A position in a world 



Animats in a world 



1. Learning what to eat and drink 



Sheep at the start 

Body 

Brain 



Sheep world 

Eating here 
increases energy 

Drinking here increases 
body water 

All other actions lead to decreased levels of energy and body water (cost of metabolism). 
To keep its needs satisfied it must commute between the Grass and the Water. 



Sheep after convergence 

Body 

Brain 

The labels on the edges indicate the policy depending on the most urgent need. 



Vitality 

• Vitality  

– v(t)  = min {water_level(t), energy_level(t)} 

 

• Death 

– If v(t) = 0 



Performance of the sheep 

Blue curve: performance of our sheep. 
Red curve: performance of a sheep that acts randomly. 



2. Learning to move 



Toad 

To move forward (crawl) the toad must keep moving one hind leg after the other. 



Toad at the start 

ENERGY 
LEFT LEG 
RELAXED 

RIGHT LEG 
RELAXED 

EXTEND 
LEFT LEG 

EXTEND 
RIGHT LEG 

EXTEND 
BOTH 



Toad world 

The toad gets a small fly at each block. It needs to keep moving forward to survive.  

… 



Toad after convergence 

ENERGY 
LEFT LEG 
RELAXED 

RIGHT LEG 
RELAXED 

EXTEND 
LEFT LEG 

EXTEND 
RIGHT LEG 

EXTEND 
BOTH 



Performance of the toad 

Blue curve: our toad (with proprioception) 
Red curve: a similar toad but without proprioception. 



Frog 

To move forward (jump) it must keep moving both hind leg simultaneously. 



Frog after convergence 
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LEFT LEG 
RELAXED 

RIGHT LEG 
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EXTEND 
LEFT LEG 

EXTEND 
RIGHT LEG 

EXTEND 
BOTH 

AND 

A new AND node is added automatically. One-shot learning triggered by need-related surprise. 



3. Learning to navigate 



Bee 



Bee world at the start 

A 20 x 20 blocks world with a torus topology. Yellow blocks represent edible flowers. 



Bee at the start 

left 
sensor 

right 
sensor 

left 
motor 

ACTION 

right 
motor 

energy 

The sensors are sensitive to the gradient of the flower smell. 



Bee world during foraging 

Traces of the bee's movements are shown. 



Bee after convergence 

left 
sensor 

right 
sensor 

left 
motor 

ACTION 

right 
motor 

energy 

AND 

A Braitenberg vehicle of type II (steering towards the gradient) is formed automatically. 



Performance of the bee 

Convergence All flowers consumed 



Conclusion 

• We presented the Generic Animat: an autonomous system that is 
able to start with an arbitrary "brain" and adapt to an arbitrary 
world 
 

• We saw how the Generic Animat can control a sheep, toad, frog, or 
bee animat and make them adapt to different worlds 
 

• The Generic Animat is intelligent in van Heerden's sense 
 

• The dynamic network topology is key: it seems to outperform all 
static topologies 
 

• More examples in the AGI-17 proceedings 
 

• Code at github.com/strannegard/ecosystem 


