
The Animat Path to Artificial
General Intelligence

Claes Strannegård, Nils Svangård, David
Lindström, Joscha Bach, Bas Steunebrink

AGA workshop IJCAI-17 Melbourne, 19 August, 2017

Our strategy for AGI

• Humans are animals. So human intelligence is a special case of
animal intelligence.

• Eventually we want to reach human level AI, but first we have the
challenge of X-level AI for other animals X.

• We are not done with X = insects. Going directly for X = human is
like going for K2 when you are unable to climb a hill.

• Stewart Wilson
– Coined the term animat = artificial animal
– Wrote the paper The Animat Path to AI

• We follow this path aiming for general AI

Intelligent behavior

Intelligent behavior is to be repeatedly
successful at satisfying one’s […] needs in
diverse, observably different, situations on the
basis of past experience

 van Heerden, 1968

Applies to all animals with needs, not just humans!
Does not mention the notion of task.

Animal needs

• Water (osmoceptors)
• Energy (insulin receptors)
• Protein (amino acid receptors)
• Oxygen (CO2 receptors)
• Integrity (nociceptors)
• Sleep (melatonin receptors)
• Proximity (pheromone receptors)
• Reproduction (sexual hormone receptors)
• Affiliation (oxytocin receptors)

Some animal needs and their associated interoceptors

Animal intelligence

• Nature is full of animals that are intelligent in
van Heerden's sense, e.g. mammals, birds,
reptiles, fish, crustaceans, and insects!

Mechanisms of animal intelligence

• Decision-making aimed at need satisfaction

• Reinforcement learning that
strengthens/weakens behavior associated with
reward/punishment

• Hebbian learning: ”if they fire together, they
wire together”

• Sequence learning, which is a form of Hebbian
learning with one of the signals delayed

• Forgetting: ”use them or lose them”

Which animal species use these
mechanisms?

Almost all!

This suggests that

• Animals have individual anatomies:

– needs

– sensors

– motors

– memory

• They also have generic mechanisms for
learning and decision-making.

Model the mechanisms, not the biological implementations!

Generic animat idea

• Let us build an artificial animal with a
configurable initial "brain" and generic
mechanisms for learning and decision-making!

Dynamic graphs

• We use dynamic graphs for modeling "brains"

• A dynamic graph consists of

– A set of nodes that can be of type SENSOR,
MOTOR, AND, OR, NOT, SEQ, ACTION, or NEED.
Each node also has a unique name.

– Labeled edges

A dynamic graph

SENSOR SENSOR SENSOR SENSOR SENSOR NEED NEED

MOTOR MOTOR MOTOR MOTOR MOTOR MOTOR

ACTION

AND

ACTION ACTION

The same graph with names shown

solid liquid blue green red water energy

eat drink up down left right

ACTION 1

water

ACTION 2 ACTION 3

Input

• SENSOR nodes receive inputs from {0,1}

• NEED nodes receive input from [0,1].

Activity propagation

solid liquid blue green red energy

eat drink up down left right

water

water

ACTION 1 ACTION 2 ACTION 3

Worlds

• A block consists of

– A block type, e.g. sand, water, or grass

– A position in space

• A world is a set of blocks.

A world

Animats

• An animat consists of

– A dynamic graph G (the animat's "brain")

– An activity on G

– A position in a world

Animats in a world

1. Learning what to eat and drink

Sheep at the start

Body

Brain

Sheep world

Eating here
increases energy

Drinking here increases
body water

All other actions lead to decreased levels of energy and body water (cost of metabolism).
To keep its needs satisfied it must commute between the Grass and the Water.

Sheep after convergence

Body

Brain

The labels on the edges indicate the policy depending on the most urgent need.

Vitality

• Vitality

– v(t) = min {water_level(t), energy_level(t)}

• Death

– If v(t) = 0

Performance of the sheep

Blue curve: performance of our sheep.
Red curve: performance of a sheep that acts randomly.

2. Learning to move

Toad

To move forward (crawl) the toad must keep moving one hind leg after the other.

Toad at the start

ENERGY
LEFT LEG
RELAXED

RIGHT LEG
RELAXED

EXTEND
LEFT LEG

EXTEND
RIGHT LEG

EXTEND
BOTH

Toad world

The toad gets a small fly at each block. It needs to keep moving forward to survive.

…

Toad after convergence

ENERGY
LEFT LEG
RELAXED

RIGHT LEG
RELAXED

EXTEND
LEFT LEG

EXTEND
RIGHT LEG

EXTEND
BOTH

Performance of the toad

Blue curve: our toad (with proprioception)
Red curve: a similar toad but without proprioception.

Frog

To move forward (jump) it must keep moving both hind leg simultaneously.

Frog after convergence

ENERGY
LEFT LEG
RELAXED

RIGHT LEG
RELAXED

EXTEND
LEFT LEG

EXTEND
RIGHT LEG

EXTEND
BOTH

AND

A new AND node is added automatically. One-shot learning triggered by need-related surprise.

3. Learning to navigate

Bee

Bee world at the start

A 20 x 20 blocks world with a torus topology. Yellow blocks represent edible flowers.

Bee at the start

left
sensor

right
sensor

left
motor

ACTION

right
motor

energy

The sensors are sensitive to the gradient of the flower smell.

Bee world during foraging

Traces of the bee's movements are shown.

Bee after convergence

left
sensor

right
sensor

left
motor

ACTION

right
motor

energy

AND

A Braitenberg vehicle of type II (steering towards the gradient) is formed automatically.

Performance of the bee

Convergence All flowers consumed

Conclusion

• We presented the Generic Animat: an autonomous system that is
able to start with an arbitrary "brain" and adapt to an arbitrary
world

• We saw how the Generic Animat can control a sheep, toad, frog, or
bee animat and make them adapt to different worlds

• The Generic Animat is intelligent in van Heerden's sense

• The dynamic network topology is key: it seems to outperform all
static topologies

• More examples in the AGI-17 proceedings

• Code at github.com/strannegard/ecosystem

