
Towards learning domain-independent
planning heuristics

Pawe l Gomoluch*, Dalal Alrajeh*, Alessandra Russo*,
Antonio Bucchiarone†

*Imperial College London, UK
†Fondazione Bruno Kessler, Trento, Italy

August 19, 2017



Presentation overview:

1. Planning as heuristic forward search.
2. Learning planning heuristics.
3. Preliminary results.
4. Future work.



Classical planning

Planning is composing sequences of actions which lead to
satisfaction of a given goal when executed from a given initial
state. In classical planning, the environment is fully-observable and
the actions are deterministic.

A classical planning task is defined by:

I Set of discrete variables (propositional or multi-valued)

I Initial state - an assignment over the variables

I Goal - a formula which must be satisfied by the final state

I Set of operators with specified preconditions and effects



Planning as heuristic forward search

Exhaustive search is
impossible for all but the
simplest problems. Search
procedure needs to be
guided towards more
promising regions of
search space and ignore
the others.

A planning heuristic is a
function estimating the
cost of reaching the goal
from the given state.

I

G
5

8

9

2

3

6

4

5
9



Learning heuristics

Existing domain-independent heuristics are based on hand-coded
algorithms, for example relaxed planners. Can the heuristics be
learned instead? Can we (incrementally) improve on
hand-coded algorithms?

Domain-independence of the learned knowledge is essential for the
generality of the solution. For example, in dynamic systems it
may be impossible to know domain before planning is necessary, let
alone gather data and train a heuristic.



System architecture

Feature extractor

State evaluator

Learner

Fast Downward
planner

plans

states

labeled 
examples

unlabeled 
examples

model

evaluations



How can we represent a planning state?

I Naive approach: include values of all the variables (this is
essentially problem-dependent).

I Domain-dependent approach: base the features concepts from
the domain description (e.g. the number of trucks, measures
of city graph connectedness).

I Domain-dependent features computed in
a domain-independent manner (e.g. occurrences of particular
actions or action pairs)1

I Full domain-independence: features do not depend on
any domain knowledge.

1Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
“Learning to Rank for Synthesizing Planning Heuristics”. In: Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016. 2016, pp. 3089–3095.



What features can we use?

Learning heuristic functions from scratch means only using
low-level features like for example the number of unsatisfied goal
propositions.

When the learned mechanism makes extensive use of features
based on existing heuristics, the task effectively changes to learning
corrections for existing heuristics or learning combinations of
heuristics.



Data collection

For training we need examples of state-goal pairs, labelled with the
cost of achieving the goal from the state. To know the cost, we
need to have solved the planning problem for the state-goal pair.

We can obtain such data from:

I Exhaustive solutions to sufficiently small planning problems.

I High-quality heuristic solutions to a bit larger problems (e.g.
obtained with portfolio planners using conservative search
routines, established heuristics and large timeouts).



Preliminary results

First experiments have been conducted on IPC domains
(Transport, Woodworking, Planning) using ridge regression and
a simple neural network.

I 3956 examples from optimal solutions of small problems
representing 3 domains.

I 2 feature sets: one using only simple features and one based
on FF2 computation.

I 2 learning algorithms: ridge regression and a fully-connected
feed-forward network with 2 hidden layers.

2Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan
Generation Through Heuristic Search”. In: Journal of Artificial Intelligence
Research 14 (2001), pp. 263–312.



Preliminary results - coverage

The number if problems solved out of 30 test problems for every
domain.

Transport Woodworking Parking

FF 10 26 19
Goal count 22 14 14

RR 22 13 11
NN 18 6 3

RR-FF 12 23 5
NN-FF 12 23 21



Preliminary results - number of generated states (Parking)

For the first 10 Parking problems, NN-FF generated on average 3.5
times less states3 than the original FF. However, such advantage
was only displayed on this particular problem subset.

problem 1 2 3 4 5

FF 34 153 1194 818 1876
NN-FF 34 52 482 260 470

problem 6 7 8 9 10

FF 2207 4068 13671 5232 42964
NN-FF 631 2228 1198 2428 2191

3geometric mean



Preliminary results - summary

I The heuristics learned from scratch have performed much
worse than the corrections, which in turn struggle to
outperform their original counterparts.

I Under specific conditions the corrections can be consistently
better informed than the originals.



Future work

I More data (including high quality heuristic solutions).

I Better feature representation.

I Different learning mechanisms and loss functions.

I Preferred operators and rollout exploration.


