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Abstract
A generic model is presented for ecosystems in-
habited by artificial animals, or animats, that
develop over time. The individual animats de-
velop continuously by means of generic mech-
anisms for learning, forgetting, and decision-
making. At the same time, the animat popula-
tions develop in an evolutionary process based
on fixed mechanisms for sexual and asexual
reproduction, mutation, and death. The ani-
mats of the ecosystems move, eat, learn, make
decisions, interact with other animats, repro-
duce, and die. Each animat has its individual
sets of homeostatic variables, sensors, and mo-
tors. It also has its own memory graph that
forms the basis of its decision-making. This
memory graph has an architecture (i.e. graph
topology) that changes over time via mecha-
nisms for adding and removing nodes. Our ap-
proach combines genetic algorithms, reinforce-
ment learning, homeostatic decision-making,
and dynamic concept formation. To illustrate
the generality of the model, five examples of
ecosystems are given, ranging from a simple
world inhabited by a single frog to a more com-
plex world in which grass, sheep, and wolves
interact.

1 Introduction
Stuart Wilson defined animats as a type of artificial an-
imals, whose sole goal, from the individual’s perspec-
tive, is homeostasis [Wilson, 1986]. He also suggested
the animat path to AI as a way of creating artificial
intelligence by modeling animal behavior, which is a
wider notion than natural intelligence [Wilson, 1991]. In
this paper we propose to follow the animat path to AI
by simultaneously modeling two fundamental processes
underlying animal intelligence: evolution, which oper-
ates at the population level between generations, and
learning, which operates at the individual level. Both
these processes are fundamental to the ability of animal
populations to adapt and survive in new environments.
Ecological models that omit either evolution or learning

are obviously severely limited in their predictive power.
Nonetheless, ecosystem models that combine evolution
and learning are relatively rare. Ecology and evolution
were modeled jointly in [Hubbell, 2001], but learning was
not included in the model.

Animals can learn via mechanisms for altering their
nervous systems in response to changes in the environ-
ment (neuroplasticity). One fundamental type of learn-
ing is structural learning, which changes the topology of
the graph by adding and removing neurons [Draganski
and May, 2008]. The goal of this paper is to suggest a
computational model for artificial animals that combines
evolution and structural learning.

There are multiple reasons for building and studying
artificial ecosystems. One is to increase understanding
of how natural ecosystems operate. Another is to pre-
dict how ecosystems might be affected by human activity
and e.g. adapt harvesting of natural resources to sustain-
able levels. A third reason -and this is our prime inter-
est here- is to create artificial intelligence by modeling a
small number of cognitive mechanisms of animals. Since
intelligence has developed in real ecosystems, this idea
is not far-fetched. Widening the scope from models of
animals to models of ecosystems gives an adequate set-
ting for developing artificial intelligence by following the
animat path to AI.

1.1 Artificial ecosystems
In analytical approaches to ecosystem modeling, ani-
mal populations are frequently modeled with numbers
representing biomass and the interaction dynamics be-
tween different population groups is modeled with sys-
tems of differential equations. A well-known example are
the Lotka-Volterra equations for predator-prey dynam-
ics [Lotka, 1925].

Biomass plays a central role also in simulation-based
ecosystem models. For instance, models created in
the Ecopath/Ecosim/Ecospace simulation environment
for marine ecosystems [Christensen and Walters, 2004]
might include variables for catch, predation, and net mi-
gration, all measured in tonnes of certain fish species.

In ecosystem models, learning is typically left out of
the picture. Yet it is known that the ability to learn is
closely correlated to fitness [Ashton et al., 2018]. Thus,



excluding learning from the ecosystem models might lead
to substantial inaccuracy. On the other hand, by in-
cluding learning, the models become more accurate and
topics such as communication, cooperation, competition,
and behavior in general can be studied in a more realistic
setting and at a greater level of detail.

1.2 Evolution
Evolution is a natural process that has generated the
phylogenetic tree of life as well as all animal behavior,
including human intelligence [Futuyma, 2009]. In com-
puter science, evolutionary computation is a family of al-
gorithms for global optimization that attempt to imitate
natural evolution. Of particular interest are the evolu-
tionary algorithms that use mechanisms such as repro-
duction, mutation, and selection. Candidate solutions to
the optimization problem are, e.g. represented as binary
strings, and these strings are then subject to an evolu-
tionary process with cross-over, mutation, etc. Evolu-
tionary algorithms often use fitness functions for select-
ing solution candidates for reproduction, but in more
realistic scenarios, where reproduction depends on who
meets who and the like, handcrafted fitness functions
are not needed. A successful technique of evolution-
ary computation is genetic programming [Koza, 1994],
in which the genome encodes computer programs. Evo-
lutionary computation has been studied in its own right,
but also in the context of artificial life [Langton, 1997;
Tuci et al., 2016].

1.3 Learning
Nervous systems are ubiquitous in the animal kingdom
and play a fundamental role in natural intelligence. Suc-
cessful artificial neural network techniques include deep
learning [LeCun et al., 2015], Long Short-Term Memory
[Hochreiter and Schmidhuber, 1997] that can store arbi-
trary values for arbitrary long time-periods, and Neu-
ral Turing machines, with their great generality but
also slow convergence and need for external memory re-
sources [Zaremba and Sutskever, 2015].
Artificial neural network models are frequently based

on static architectures that are only plastic in the sense
that their connectivity patterns develop over time. Sev-
eral neural network models also allow nodes to be added
and removed, however. For instance, the cascade-
correlation architecture adds one hidden neuron at the
time [Fahlman and Lebiere, 1990] and the progressive
neural networks grow new columns while retaining pre-
viously acquired knowledge [Rusu et al., 2016]. In the
opposite direction there are regularization techniques
[Goodfellow et al., 2016] and pruning methods [Wolfe et
al., 2017] for reducing the size of neural networks, while
improving generalization.

Reinforcement learning occurs across the animal king-
dom and its biological basis is well understood [Niv,
2009]. Reinforcement learning algorithms, on the other
hand, are powerful tools for learning and decision-
making in a general setting [Sutton and Barto, 1998].
Q-learning is a basic algorithm for learning an optimal

policy from experience for any Markov Decision Pro-
cess [Watkins, 1989]. Other reinforcement learning al-
gorithms included tree-based methods running in batch-
mode [Ernst et al., 2005] and local Q-learning, where
Q-values collected from multiple agents are merged into
a global Q-value [Russell and Zimdars, 2003]. A way
of combining conjunctions of basic features in reinforce-
ment learning is described in [Buro, 1998].
Reinforcement learning algorithms have also been

used for homeostatic agents, whose single objective is
to regulate their homeostatic variables and thus sur-
vive as long as possible [Keramati and Gutkin, 2011;
Yoshida, 2017]. Homeostatic decision-making aims at
keeping the "body fluids" in balance and combines natu-
rally with models for hormonal control [Avila-García and
Cañamero, 2005], cognitive modulation [Bach, 2015],
and personality traits [Bouneffouf et al., 2017]. In
the case of multiple homeostatic variables, representing,
e.g. water and energy, it may be natural to use multi-
objective reinforcement learning [Roijers et al., 2013].

Evolution and learning have been combined in com-
puter models, e.g. when genetic algorithms were used for
developing architectures of deep neural networks [Such et
al., 2017] and for evolving cognitive architectures within
the MicroPsi framework [Dietzsch, 2008].

1.4 Structure of the paper
This paper presents a novel computational model of
ecosystems that uses several elements and techniques
from the research fields mentioned above. We suggest
a fixed set of generic mechanisms for perception, action,
learning, decision-making, reproduction, and death.

The paper extends our previous work [Strannegård et
al., 2017] by adding more sophisticated rules for archi-
tecture development, by widening the scope from agents
to ecosystem of agents, and by including genetic opera-
tions. Section 2 defines our notion of graph. Section 3
defines the animats and Section 4 introduces the artificial
ecosystems. Sections 5 and 6 describe how the animats
learn and make decisions, respectively, while Section 7
describes how the animats reproduce. In Section 8, some
examples of ecosystem simulations are given. Section 9,
finally, draws some conclusions.

2 Graphs
In this section we define our own variety of graphs, which
can can alternatively be described as sets of sentences of
temporal logic [Gabbay et al., 1994]. We also describe
how activity propagates through these graphs.

2.1 Definition of graph
Let us start with a model of the sensory apparatus.
Definition 1 (Sensor, sensor set, concept). The sensory
notions are defined as follows:
A sensor is a propositional variable.
A sensor set is a finite set of sensors.
A concept is a finite sequence of sensor sets.



Thus, sensors, sensor sets, and concepts are all de-
fined mathematical objects here. As we shall see later,
these objects can be activated by stimuli from the envi-
ronment. For instance, a concept will be activated when
a certain sequence of stimuli is received. Moreover, a
sensor p will be active if and only if the concept [{p}] is
active. We use the notation {. . .} for sets and [. . .] for
sequences.
Example 1. Here are some examples of these notions:

• Suppose red, green, and blue are sensors for colors.
• Then {}, {green}, {blue, green}, and
{red, blue, green} are sensor sets representing,
respectively, black, green, turquoise, and white.

• Moreover, [{}], [{green}], [{blue, green}], and
[{red}, {red}, {green}] are concepts that represent
different color sequences.

Concepts based on other modalities such as tastes,
smells, sounds, and touch can be defined analogously. It
is also straight-forward to define multi-modal concepts.
Now let us turn to the motor apparatus, which is sym-
metric to the sensory apparatus defined above.
Definition 2 (Motor, motor set, action). The motor
notions are defined as follows:

• A motor is a propositional variable.
• A motor set is a finite set of motors.
• An action is a finite sequence of motor sets.

Example 2. Here are some examples of these notions:
• left and right are motors for moving the left and

right pectoral fins of a fish robot.
• {}, {left}, and {left, right} are motor sets repre-

senting, respectively, idleness, moving the left fin
only, and moving both fins.

• [{right}, {left}] and [{right, left}] are examples of
actions. In the former, one fin is moved at a time
and in the latter both fins are moved simultaneously.

If x is a concept or an action we will write y ∈ x, if
x = [x1, . . . , xn] and y = xi for some i.
Definition 3 (Reflex). A reflex is a pair (c, a), where c
is a concept and a is an action.
Again we take an existing term and give it a mathe-

matical meaning without connotations. Intuitively, these
reflexes represent neural connections that link sensory
notions to motor notions. The human knee reflex is an
example: when certain sensory receptors at the knee are
activated, a nerve signal is transmitted to motor neu-
rons that cause the leg muscles to contract and produce
a kick. Other examples are the sucking and rooting re-
flexes in babies, both of which facilitate breastfeeding.
Now we are ready to define our graphs.
Definition 4 (Graph). Let C be a finite set of con-
cepts, A a finite set of actions such that C ∩ A = ∅,
and R ⊆ C × A a set of reflexes. Let Cset = {s :
x ∈ C and s ∈ x for some x}, Csensor = {s : x ∈

q0 q1 q2 q3 q4

{} {q0, q1, q2} {q2} {q3, q4}

[{}] [{q0, q1, q2}] [{q2}] [{q3, q4}, {q2}]

[{}, {p3}] [{p0, p1, p2}] [{p3}, {p2, p4}]

{} {p0, p1, p2} {p3} {p2, p4}

p0 p1 p2 p3 p4

Figure 1: Example of a graph. The layers are from bottom to
top: sensors, sensor sets, concepts, actions, motor sets, and
motors. This graph has one reflex.

Cset and s ∈ x for some x}, Aset = {s : x ∈ A and s ∈
x for some x}, Amotor = {s : x ∈ Aset and s ∈
x for some x}. Let the graph Gbe defined as the graph
G = (Csensor ∪ Cset ∪ C ∪ A ∪ Aset ∪ Amotor, E), where
E(x, y) holds if one of the following conditions is ful-
filled:

• x ∈ y and y ∈ Cset,
• x ∈ y and x ∈ C,
• (x, y) ∈ R,
• x ∈ A and y ∈ x,
• x ∈ Aset and y ∈ x.
Thus each graph forms a feed-forward graph with six

layers of nodes. An example of a graph is given in Figure
1.

2.2 Graph activity
In this subsection we define how activity propagates
through the graphs along the edges. Although real an-
imals live in continuous time, we will use a simplified
model where time proceeds in discrete steps called ticks.
Definition 5 (Input stream). An input stream for a
graph G is a function that assigns a boolean value p(t)
to each sensor p and point in time t.
Using boolean values for inputs is in line with the Mc-

Culloch–Pitts model of neurons that either fire all out
(when the activity exceeds a threshold) or not at all.
For graded responses one may use several neurons, e.g.
one that fires when the pH is 6.2, another that fires when
it is 6.3, etc. Now we can define how input streams give
rise to activity that propagates through the graphs:
Definition 6 (Graph activity). This is how activity
propagates through a given graph:

• A sensor p is active at t if p(t) is true.
• A sensor set S is active at t if every sensor p ∈ S

is active at t.



q0 q1 q2 q3 q4

{} {q0, q1, q2} {q2} {q3, q4}

[{}] [{q0, q1, q2}] [{q2}] [{q3, q4}, {q2}]

[{}, {p3}] [{p0, p1, p2}] [{p3}, {p2, p4}]

{} {p0, p1, p2} {p3} {p2, p4}

p0 p1 p2 p3 p4

Figure 2: Example of graph activity. Activity is shown in
red. The activity propagates from three sensors to a motor
via a reflex within the same tick.

• A concept [S0, . . . , Sn] is active at t if for every i
such that 0 ≤ i ≤ n, the sensor set Si was active at
t− (n− i).

• An action a is active at t if there is a reflex (c, a),
where c is active at t or if π(t) = a. Here π(t) is
the policy, which will be defined in Subsection 6.

• A motor set Mi is active at t if there is an action
[M0, . . . ,Mn] that was active at t− i.

• A motor q is active at t if q ∈ M , for some motor
set M that is active at t.

An example of graph activity is given in Figure 2.
Example 3. For instance, the concept [S0, . . . , S10] is
active now if S0 was active 10 steps ago and S1 was ac-
tive 9 steps ago and . . . and S10 is active now. Also, the
motor set M4 is active now if the action [M0, . . . ,M10]
was active 4 steps ago.

2.3 Top activity
In this subsection we will introduce the notion of top
activity, which plays a key role later for both decision-
making and learning. First we introduce a partial order
relation � on concepts:
Definition 7 (Extension). The concept [S′0, . . . , S′n] ex-
tends the concept [Sn−m, . . . , Sn] if n ≥ m and S′i ⊇ Si,
for all i such that n − m ≤ i ≤ n. If c′ extends c, we
write c′ � c. If c′ � c, but not c � c′, then we write
c′ � c.
Intuitively, c′ � c means that c′ is a more detailed

concept than c.
Example 4. Here are two examples of extensions con-
cerning, respectively, tastes and melodies:

• [{sweet, sour}] � [{sweet}]
• [{C}, {C}, {C}, {D}, {E}] � [{D}, {E}]

It is easy to see that the relation � forms a partial
order on the set of concepts of a given graph.
Definition 8 (Top activity). Let C be a set of concepts.
A concept c ∈ C is top active at t if c is active at t and
c is �-maximal with respect to the active concepts in C.

Intuitively, the top active concepts constitute a de-
scription of the present situation at a maximum level of
detail with respect to a given set of concepts.
Example 5. Here are some examples of top activity:

• Suppose the concept [{sweet, sour}] is top active.
Then [{sweet}] is active, but not top-active.

• Suppose the concept [{C}, {C}, {C}, {D}, {E}] is
top active. Then [{D}, {E}] is active, but not top
active.

• Suppose a graph contains the concepts budgerigar �
parrot � bird and no others. When budgerigar is
active, it will also be top-active, while the other con-
cepts will also be active, but not top active.

Several nodes can be top active at the same time. In
Subsection 6 we will select actions based on experience
associated with those nodes that are currently top active.

Before moving on, let us consider an example that
illustrates the expressive power of the graphs.
Example 6. A physical robot that plays a simple digital
piano with 88 keys can be constructed by using a graph
as follows: Let p1, p2, . . . , p88 be sound sensors for the
88 keys and let q1, q2, . . . , q88 be motors that press the
corresponding piano keys. For simplicity we assume that
the robot can play any number of keys at the same time.
Now we can construct a graph with one concept for every
piece of piano music that we want the robot to recognize
and one action for every piece that we want the robot to
be able to play. When a piece of music that the robot
has stored in its graph is played by someone else, the
corresponding node of the robot’s graph will be top active.
When an action that represents a given piece of music is
activated, the robot will play that particular piece.

3 Animats
In this section animats will be defined.
Definition 9 (Homeostatic variable). A homeostatic
variable is a variable among h0, h1, . . ..
We will use the symbol h for arbitrary homeostatic

variables. Later we will see that each homeostatic vari-
able h receives a real value h(t) ∈ [0, 1] from the envi-
ronment at each point in time t. Animals typically have
physiological needs such as water, energy, and warmth.
These needs often have associated interoceptors that in-
dicate their status. Here are some examples of needs
and their associated interoceptors: Water (osmocep-
tors); Energy (insulin receptors); Protein (amino acid re-
ceptors); Oxygen (CO2 receptors); Integrity, i.e. freedom
from pain (nociceptors); Sleep (melatonin receptors);



Heat (thermoreceptors); Proximity (pheromone recep-
tors); Reproduction (sexual hormone receptors); Affili-
ation (oxytocin receptors). Next we will define the ex-
perience variables that will be used for storing various
experiences.
Definition 10 (Experience variable). The experience
variables are the following:

• age. This is an integer that represents the number
of ticks since birth. Negative values will be used for
the incubation time before birth, which happens at
time 0.

• alive. This is a boolean value that tracks whether
the animat is alive.

• Qh(c, a). These local Q-values are real values that
estimate how good it is from the perspective of h to
do action a when c is top-active. These values are
initialized to 0.

• Rh(c, a). These reliability values are real values that
estimate the reliability of Qh(c, a) based on its his-
torical standard deviation. These values are initial-
ized to 1.

Definition 11 (Parameter). A parameter is a real num-
ber encoded as a bitstring of type float.

Parameters are used for regulating learning,
decision-making, reproduction, and death. Exam-
ples of parameters are MaxAge, MutationRate,
DiscountRate. There are also parameters such as Sex
and SexualReproduction that encode boolean values
via the convention that positive values represents True,
whereas non-positive values represent False. We will
introduce the specific parameters that belong to the
animat model gradually as the need to do so arises in
the text.
Definition 12 (Genotype). A genotype consists of

• a graph
• a set of homeostatic variables
• a set of parameters.
The genotype remains constant throughout the life-

time of the animat. It is used for specifying what the
animat is like at birth. It also specifies the part of the
animat that is involved in reproduction.
Definition 13 (Phenotype). A phenotype consists of

• a graph
• a graph activity
• values of the homeostatic variables
• values of the experience variables.
The phenotype changes constantly throughout the life

of the animat. It is used for specifying what the animat
is like at present, save for its genetic information and its
conformation.
Definition 14 (Conformation). A conformation is a
subset of R3.

For instance, a conformation can describe the location
and body position of an animal. It can equally well de-
scribe the location and geometry of a dead object, like a
rock.
Definition 15 (Animat). An animat consists of:

• a genotype
• a phenotype
• a conformation.
The genotype remains constant over the animat’s life,

whereas the phenotype and conformation typically vary
at each tick.

4 Ecosystems
Definition 16 (Object). An object consists of:

• a type: a natural number. The types could, e.g. rep-
resent rock, earth, sand, air, water, or carcass.

• a conformation
Definition 17 (Ecosystem). An ecosystem is a pair
(A,O), where A is a set of animats and O is a set of
objects, such that all conformations are pairwise disjoint.

We will now show how these ecosystems develop over
time. Algorithm 1 shows the main loop of the ecosystem
update algorithm. Details will be given in the following.
In computer simulated environments, this algorithm is

Algorithm 1: Main loop of the Ecosystem update
algorithm.
Input: An ecosystem (A,O)
t = 0
while true do

for object ∈ O do
Update its conformation
Update its type

end
for animat ∈ A do

if animat is alive then
Leave the genotype of animat unchanged
For the phenotype of animat:
Update the sensor values
Update the homeostatic variables
Call the Phenotype update algorithm
Update the conformation of animat

else
Add an object of type carcass to O with
the same conformation as animat
Remove animat from A

end
end
Call the Reproduction algorithm
Add the animats created at t to A
t = t+ 1

end

needed for specifying how the ecosystems develop. In a



physical environment, however, e.g. the environment of
a physical robot, no such specification is needed, since
all the sensor values etc. are generated automatically.

Note that at each tick, the phenotypes of all animats
of the ecosystem receive boolean values to their sensors
and real values to their homeostatic variables.

Also note that at each tick, the conformations of ani-
mats and objects are updated according to real or simu-
lated laws of physics. For instance, animals and objects
may move due to gravity, wind, or currents. Animals
may also move due to their own actions. The conforma-
tion of animals may also change, e.g. as a result of their
own or other animals’ actions, including predation.

5 Learning
Algorithm 2 shows the main loop of the phenotype up-
date algorithm, which is common to all animats.

Algorithm 2: Main loop of the Phenotype update
algorithm.
Input: An old phenotype A
New values for its homeostatic variables
New values for its sensors
if alive and age > 0 then

Update the concept activity
Update the concept top activity
Update the experience variables
Update the graph
Update the action activity
Output: The updated phenotype A

end

In the next few subsections, we will explain the steps
of Algorithm 2 that require explanations in detail.

5.1 Experience variable update
age is updated by adding 1 at each tick.
alive is set to True if age = 0. alive is set to False if

h = 0 for some homeostatic variable h (death from lack
of resources) or if age > φMaxAge (death from senes-
cence).

Updating the local Q-value is more complicated. First
we need a definition of rewards in terms of homeostatic
variables.
Definition 18 (Reward). For each homeostatic variable
h, let

rh(t) = h(t)− h(t− 1).
As usual, negative rewards can be understood as pun-

ishments. Now we are ready to state how the local Q-
values are updated.
Learning rule 1 (Local Q-value updates). Suppose the
concept c is top active at t and the action at was per-
formed at t. Then at t+1, Qh(c, at) is updated by letting

Qh(c, at) = Qh(c, at) + ∆,

where

∆ = α·
[
rh(t+ 1) + θ ·max

a′
Qglobal

h (t+ 1, a′)−Qh(c, at)
]
,

and

Qglobal
h (t+ 1, a′) =

∑
c′∈T A(t+1) Qh(c′, a′) ·Rh(c′, a′)∑

c′∈T A(t+1) Rh(c′, a′) .

Here α and θ are parameters for learning rate and dis-
count rate, respectively, while TA(t + 1) are the nodes
that are top active at t+ 1.

Intuitively Qglobal
h is a sum of the local Q-values Qh

that is weighted by Rh. Note that in the special case
when there is only one homeostatic variable and all states
are unique so that exactly one concept is top active at
each t and the reliability values are all set to 1, this
update rule coincides with that of standard Q-learning.

Below we sometimes refer to mean and standard devi-
ations of data sets. In all cases, these are computed using
the online algorithms for mean and standard deviation
described in [Knuth, 1997].
Learning rule 2 (Local R-value updates). Suppose the
concept c is top active and the action at was performed
at t. Also let SD be the standard deviation of the set
of values assigned to Qh(c, at) over time. Then put
Rh(c, at) = 1/(SD + 1).

5.2 Graph update
Now we will proceed to learning rules that alter the
graph itself. Let us begin with rules that are triggered
by prediction errors, or surprises.
Definition 19 (Surprise). The animat is surprised
at t if there is a homeostatic variable h such that
Qh(c, at) is updated at t + 1 by at least the quantity
SurpriseThreshold, which may be positive or nega-
tive, for each concept c that is top active at t. Here
SurpriseThreshold is a parameter.
Now we are ready to define our first structural, i.e.

architecture-modifying rule. Intuitively it adds a new
sensor set when the outcome of an action was much bet-
ter or much worse than predicted.
Learning rule 3 (Emotional merge). Suppose the ani-
mat gets surprised at t. Also suppose there are at least
two distinct concepts [S] and [S′] that are top active at t.
Then select two such concepts [S] and [S′] and add S∪S′
to the phenotype graph. Also put Qh([S∪S′], at) = rh(t),
for all homeostatic variables h.

Note that Emotional merge never applies if only one
concept is top active.

Now let us move on to the second structural rule. This
rule is also triggered by prediction errors and it adds a
new sequence when this happens.
Learning rule 4 (Emotional concatenation). Suppose
the animat gets surprised at t and only one concept c
is top active at t. Then randomly select a concept c′
that was top active at t − length(c). Add concat(c, c′)



to the phenotype graph. Also put Qh(concat(c, c′), at) =
rh(t), for all homeostatic variables h. Here concat is the
concatenation operation.

Next we shall introduce a notion of similarity, whose
exact meaning is regulated by a parameter. This no-
tion will be used for identifying concepts that are similar
enough for one of them to be deleted without causing too
much damage to the global performance of the animat.
Definition 20 (Approximation). Let v ≈ v′ mean that

|v − v′|
|v|+ |v′| ≤ φApproximationT hreshold

if the denominator is nonzero and true otherwise.
For instance, if φApproximationT hreshold = 0.05, then

0.52 ≈ 0.5, but 0.6 6≈ 0.5.
Now we are ready to state the two structural rules that

remove concepts: the forgetting rules. These rules are
simplified in the sense that forgetting is instantaneous
rather than a gradual decay process.
Learning rule 5 (Combination forgetting). Suppose
Qh([S ∪S′], a) ≈ Qh([S], a), for all actions a and home-
ostatic variables h. Then delete the concept [S∪S′] from
the graph.
Learning rule 6 (Sequence forgetting). Suppose
Qh(concat(c, c′), a) ≈ Qh(c′, a), for all actions a and
homeostatic variables h. Then delete the concept
concat(c, c′) from the graph.

6 Decision-making
In this section we will describe the decision-making al-
gorithm (or action activation algorithm) of the animats.
The decision-making is performed by a policy that se-
lects exactly one action at every tick.

First, let us introduce a measure of how well the ani-
mat is doing at time t:
Definition 21 (Well-being). The well-being w(t) of an
animat is defined as follows:

w(t) = min
h
h(t).

Thus well-being is a value in [0, 1], where 0 means
death and 1 means full satisfaction. This definition will
be most adequate if some care is taken when specify-
ing the homeostatic variables. For instance, to model
pain, which is something that animals seek to minimize,
one may use a homeostatic variable for integrity, where
0 corresponds to minimum integrity (maximum pain)
and 1 to maximum integrity (minimum pain). Also, to
model body temperature, one may use two homeostatic
variables, one for cool and one for warmth. When the
body temperature is optimal, both these variables as-
sume the value 1 and when it is warmer or cooler, one of
them is strictly smaller than 1. To model critical needs,
e.g. needs such as energy, whose dissatisfaction implies
death, one may use a homeostatic variable that takes val-
ues in the full range [0, 1]. To model non-critical needs

such as closeness or sexuality, one may use a homeostatic
variable that takes values in [r, 1], for some r > 0. The
fact that well-being is bounded by 1 reflects the idea
that needs can be fully satisfied. An animal that is full
will not benefit from eating, and an animal that is not
thirsty will not benefit from drinking. This model of
well-being deviates from that of [Keramati and Gutkin,
2014] by having a criterion for death due to homeostatic
unbalance and by taking that criterion into account in
the decision-making.

The discounted accumulated well-being that a given
action might lead to is estimated as follows:
Definition 22 (Utility). Let

utility(t, a) = min
h

[
h(t) · δh +Qglobal

h (t, a)
]

Here δh is a parameter.
Note that the utility of an action depends on the

present homeostatic variables. For instance, the util-
ity of eating or drinking depends on the present levels of
hunger and thirst. Next we will define the policy in its
most basic form, which is a version of epsilon-greedy.
Definition 23 (Policy). Let the policy be defined as:

π(t) =
{argmaxa utility(t, a) if random() > ε

a random action otherwise
Here ε is a parameter and random() is a random gener-
ator for the real unit interval.

This is the definition that was promised earlier in Def-
inition 6 of action activity.

7 Reproduction
We want our model for reproduction to cover several
types of organisms and both sexual and asexual repro-
duction, e.g. wind and insect pollination, grass that
spreads organically to adjacent locations, sea turtle eggs
that are left in the sand, fish eggs that drift with the
streams, mammals that give live birth, etc. Here we will
present a basic algorithm for sexual reproduction. The
case of asexual reproduction is similar but simpler.

7.1 Mechanisms of reproduction
The reproduction mechanisms that will be used here are
the standard ones: crossover, as defined in Algorithm 3
and mutation, as defined in Algorithm 4.

To be able to use crossover and mutation algorithms,
we need to encode the genotypes as bitstrings. Since
sensors and motors are propositional variables, sets of
sensors and motors can be naturally represented as bit-
strings. For simplicity we assume that all concepts and
actions have a maximum length. Then they can easily
be encoded as bitstrings as well. Moreover, any set of
reflexes can also be encoded as a bitstring in a straight-
forward fashion. Consequently any graph can be en-
coded as a bitstring. Furthermore, parameters and ex-
perience variables are both computer representations of
real numbers. Thus they too can be encoded as bit-
strings.



Algorithm 3: Cross-over algorithm
Input: Two bitstrings w and w′ of the same length
begin

Let w0 be a random element from the set
{w,w′}
Let w1 be the other element of {w,w′}
Let n be the length of w0 and w1
Generate a random (crossover) point
k ∈ {1, . . . , n− 1}
Let w′′ be the first k elements of w0
concatenated with the last n− k elements of w1

end
Output: The crossover string w′′

Algorithm 4: Mutation algorithm
Input: A bitstring w and a number MutationRate
begin

w′ = [ ]
for bit ∈ w do

if random() < MutationRate then
bit’ = flip(bit)

end
w′ = concat(w′, bit′)

end
end
Output: The mutated bitstring w′

7.2 Preconditions of reproduction
Let us start by giving a measure of string similarity,
which will be used for determining sufficient similarity
for sexual reproduction. This measure was selected for
simplicity and may well be replaced by some other sim-
ilarity measure.
Definition 24 (String similarity). Two bitstrings w and
w′ of the same length n > 0 are similar if

H(w,w′)
n

< SimilarityThreshold

Here H(w,w′) is the Hamming distance (i.e. num-
ber of differing positions) between w and w′, and
SimilarityThreshold is a parameter.
Definition 25 (Genetic similarity). Two animats A and
A are genetically similar if the following holds:

• their genotype graphs are similar (when encoded as
bitstrings in the way outlined above)

• their sets of homeostatic variables are identical (al-
though their values might differ).

The similarity measure varies between 0 (no similar-
ity) and 1 (identity). Like many other similarity mea-
sures, it is not transitive.

Now we are ready to state the preconditions for sexual
reproduction: Suppose A and A′ are animats such that

• The bodies of A and A′ have physical contact. This
can be made precise in terms of topology: They have

physical contact if there is a point p belonging to the
conformation of A such that all neighborhoods of p
intersect the conformation of A′;

• A and A′ are genetically similar as defined above;
• One of A and A′ is female and the other is male in

the sense that the parameter Sex is positive for one
of A and A′ and non-positive for the other;

• A and A′ are both fertile, in the sense that
their age is inside the interval defined by their
phenotype parameters ReproductiveAgeStart and
ReproductiveAgeEnd;

• Reproduction is successful. By definition this hap-
pens if random() < ReproductionProbabilityA for
A and random() < ReproductionProbabilityA′ .

If these criteria are met, then we say that A and A′

reproduce and refer to them as parents.

7.3 Consequences of reproduction
When the criteria for reproduction are met, a num-
ber of new animats (offspring) are formed and intro-
duced into the ecosystem. Let us describe how this hap-
pens. The number of offspring N is determined by do-
ing crossover followed by mutation on the parameters
NumberOfOffspring of the parents. Then a new an-
imat Ak is defined for each 1 ≤ k ≤ N . Each Ak is
generated in a separate process that involves crossover
followed by mutation. To begin with, the genotype of
Ak is defined as follows:

1. The genotype graph of Ak is defined by encoding
the graphs of the parents as bitstrings, as defined
above, doing crossover, then mutation, and finally
decoding the resulting string into a graph.

2. The parameters of Ak are obtained from the cor-
responding parameters of the parents by using
crossover followed by mutation.

3. The experience variable alive is set to True and
age is set to −round(abs(IncubationT ime)), where
IncubationT ime is a parameter of Ak. Note the mi-
nus sign, which signals that Ak is yet to be born.
The remaining experience variables are produced
using crossover followed by mutation.

Turning to the (initial) phenotype of Ak now, it is
defined as follows:

• The phenotype graph of Ak is identical to the geno-
type graph.

• The activity of phenotype graph of Ak is False for
all nodes.

• The phenotype experience variables of Ak are iden-
tical to those of the genotype.

• The homeostatic variables of Ak are initialized to
the average values of the parents at the moment of
reproduction.



Figure 3: The frog in the forest. This ecosystem consists of a
frog on an infinite path of cells that are green or blue (shallow
water). The frog jumps forward at each tick automatically. It
has two homeostatic variables (energy and water) that go up
when it eats on green and drinks on blue cells, respectively.
(Real frogs do not drink, but this animat frog happens to do
so.) At each tick, small quantities of energy and water are
consumed due to metabolism. This means that the animat
eventually dies if it makes suboptimal actions too often.

eat drink

{eat} {} {drink}

[{eat}] [{}] [{drink}]

[{green}] [{blue}]

{green} {blue}

green blue

Figure 4: The phenotype graph of the frog. The action [{}]
is the idle action (passivity), which activates no motors.

The conformation of Ak is located at the place of con-
ception and its geometry must be specified by the ecosys-
tem dynamics. This concludes the definition of the new
animat Ak. As soon as Ak has been conceived, it is in-
serted into the ecosystem and Algorithm 2 starts running
with Ak as input.

Before moving on, let us note that the reproduction
model just described enables new "species" to be formed.
In fact, reproduction involves mutation, which has an el-
ement of randomness. Mutation may lead from a popu-
lation of animats that are genetically similar to a popu-
lation where this is no longer the case. A similar genetic
drift can happen also as a result of crossover alone.

8 Examples of ecosystems
In this section we will look at five concrete examples
of ecosystems. The purpose is to show how the animat
model works and at the same time illustrate its gen-
erality. Code of the animat model and several concrete
ecosystems can be found at www.github.com/animatai.

8.1 The frog in the forest
Consider the frog world shown in Figure 3. This world
is populated by a frog animat with the phenotype graph
shown in Figure 4. This frog will quickly learn to eat on
green and drink on blue cells. In fact, after a few ticks,

Figure 5: The frog in the swamp. This ecosystem consists
of a frog on an infinite path of cells that are green (grass),
turquoise (swamp), or blue (water). The frog jumps forward
at each tick automatically. It has two homeostatic variables
(energy and water) that go up when it eats on green and
drinks on blue cells, respectively. If it eats or drinks on a
turquoise cell (which is both blue and green), it will throw
up and thus lose energy and water Again, a small quantity
of energy and water is always consumed due to metabolism.

Qenergy([{green}] , [{eat}]) >
Qenergy([{green}] , [{drink}])

and
Qwater([{blue}] , [{drink}]) > Qwater([{blue}] , [{eat}]).
This leads to the desired behavior (almost exactly as
in Q-learning). In this case the phenotype graph will
remain the same throughout the lifetime of the animat.
In fact, it will never get surprised and no rules for adding
or removing nodes will ever be triggered.

8.2 The frog in the swamp
Now consider a slightly different frog world, shown in
Figure 5. This world is also populated by a frog animat,
whose phenotype graph looks exactly as in the previous
example (Figure 4). This time the graph will change,
however. In fact, when eating or drinking on a turquoise
square for the first time the frog will vomit and hence
get punished. This punishment means that the animat
gets surprised (e.g. it had previously learned that it got
rewarded for drinking on blue cells, but now it got pun-
ished for doing this instead).

This surprise triggers the rule Emotional merge, which
in this case leads to the formation of the new concept
[{green, blue}], representing turquoise. The resulting
graph is shown in Figure 6. The animat will remem-
ber the bad experience now, since:

Qwater([{green, blue}] , [{drink}]) < 0.

8.3 The frog in the field
Now let us consider a third frog world, this time it looks
like in shown in Figure 7. This world is again populated
by a frog animat, whose initial phenotype graph looks
as in Figure 4. The animat will get surprised when it
drinks poisonous water for the first time.

This surprise in turn triggers the rule Emotional con-
catenation. In fact, Emotional merge does not ap-
ply. This leads to the formation of the new concept
[{green}, {blue}], representing green followed by blue.
The resulting graph is shown in Figure 8. Again the
animat will remember the bad experience, since:

Qwater([{green}, {blue}] , [{drink}]) < 0.



eat drink

{eat} {} {drink}

[{eat}] [{}] [{drink}]

[{green}] [{green, blue}] [{blue}]

{green} {green, blue} {blue}

green blue

Figure 6: The phenotype graph of the frog after the auto-
matic node addition.

Figure 7: The frog in the field. This example is similar to
the other ones, but the twist this time is that the water to
the right of green cells is poisonous. For instance, the wind
might have been blowing from left to right and mixed soil
into the water pools, thus making some of them poisonous.

eat drink

{eat} {} {drink}

[{eat}] [{}] [{drink}]

[{green}] [{green}, {blue}] [{blue}]

{green} {blue}

green blue

Figure 8: The phenotype graph of the moor frog after the
automatic node addition.

Figure 9: The sheep world at time 0. This world consists of
green cells (grass), blue cells (water), and brown cells (sand).
The world is populated with sheep, two males and two fe-
males. The sheep can move up, down, left, and right. They
can also idle, eat, and drink. Moreover, they have sensors
for green, blue and brown. Again their homeostatic variables
are energy and water. Eating and drinking on green and blue
cells give, respectively, energy and water reward. Eating or
drinking on other cells yields a slight punishment in terms of
both energy and water. The grass grows by propagation to
adjacent cells and gets consumed when the sheep graze there.

8.4 The sheep world
Now let us consider a two-dimensional ecosystem with
sheep. Figures 9, 10, and 11 show this ecosystem at
time 0, 97, and 123, respectively.

8.5 The sheep and wolves world
The sheep and wolves world at time 0 is shown in Fig-
ure 12. Figure 13 shows scaled biomass (total weight)
curves for this ecosystem, indicating how the popula-
tions of sheep and wolves develop over time. Figures 14
and 15 show the learning curves for one of the sheep and
one of the wolves, respectively.

9 Conclusion
A computational model was presented for fully auto-
matic genotype and phenotype development in artificial
ecosystems. The model combines generic mechanisms
for decision-making, learning, reproduction, and death.
The model uses graphs, whose architectures develop over
time as a result of learning as well as evolution. This fea-
ture sets it apart from other approaches that combine
evolution and learning, e.g. [Ackley and Littman, 1992]
and [Yaeger, 1994].



Figure 10: The sheep world at time 97. Here we see that
the grass has grown and the sheep have reproduced. The
new symbol here represents a pregnant female with offspring
inside her body.

Figure 11: The sheep world at time 123. As the sheep mul-
tiply, the impact of competition gets more pronounced. For
instance, the two sheep to the left might have difficulty find-
ing grass. At this point several sheep have already died from
lack of resources and others have died out of senescence. Sev-
eral generations have also been born.

Figure 12: The sheep and wolves world at time 0. This world
is initialized with 6 sheep, 4 wolves and 10 patches of grass.
Both sheep and wolves have energy and water as their home-
ostatic variables. Both get their water from drinking at the
blue cells. The sheep get their energy from grazing, whereas
the wolves get theirs from predation, while eating on a cell
that is shared with a sheep.

Figure 13: Biomass curve. These three curves show the de-
velopment over time of the biomass for sheep, wolves, and
grass, respectively.

Figure 14: Learning curve for one of the sheep. This sheep
was born at tick 200 with maximum levels of energy and
water. After several ticks the sheep tried to eat grass and
learned to eat. After tick 240 the sheep started to explore the
world. We observe sharply declining curves between tick 252
and tick 258. The decline was caused by either inappropriate
actions, e.g. eating or drinking in a sand cell, or being bitten
by a wolf. Both would lead to significant decreases. After tick
260 the sheep drank water several times and quickly learned
to drink to increase its level of water. Still, it has difficulty
finding resources after about 282 steps.

Our computational model is still in early phase and
much work remains to be done when it comes to fine-
tuning, scalability testing, and optimization.

Several examples of developing ecosystem simulations
were given in order to illustrate how the model works
and give an indication of its generality.

From the perspective of ecosystem modeling, the sim-
ulations suggest that the model can handle a wide range
of simple ecosystems. Our model has not been tried on



Figure 15: Learning curve for one of the wolves. This wolf
was born at tick 220. After 20 steps it tried to drink water
and learned it in a short time. At tick 260 and 276 the
wolf took inappropriate actions in wrong cells which lead to
significant loss of energy and water. At tick 280 the wolf tried
to eat for the first time and learned to eat in few ticks. The
wolf started to explore again after tick 300 when the curve
began to decline.

more complex ecosystems, however. The combination of
learning and evolution seems to be indispensable for re-
alistic ecosystem simulations. In the future we expect
prominent ecosystem models to include both these com-
ponents. From the perspective of AI, our simulations
suggest that dynamic architectures have a clear advan-
tage over the static architectures that are, e.g. used in
deep learning. As far as we understand, dynamic archi-
tectures could well be the next big step forward in AI.
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