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Abstract

Like any formal field of science, AI may be ap-
proached axiomatically. We formulate require-
ments for a general-purpose, human-level AI
system in terms of postulates. We review the
methodology of deep learning, examining the
explicit and tacit assumptions in deep learn-
ing research. Deep Learning methodology seeks
to overcome limitations in traditional machine
learning research as it combines facets of model
richness, generality, and practical applicabil-
ity. The methodology so far has produced out-
standing results due to a productive synergy
of function approximation, under plausible as-
sumptions of irreducibility and the efficiency
of back-propagation family of algorithms. We
examine these winning traits of deep learn-
ing, and also observe the various known failure
modes of deep learning. We conclude by giv-
ing recommendations on how to extend deep
learning methodology to cover the postulates of
general-purpose AI including modularity, and
cognitive architecture. We also relate deep
learning to advances in theoretical neuroscience
research.

1 Introduction

Deep learning is a rapidly developing branch of ma-
chine learning which is clustered around training deep
neural models with many layers and rich computational
structure well suited to the problem domain [Goodfel-
low et al., 2016; Schmidhuber, 2015]. Initially moti-
vated by modelling the visual cortex [Fukushima, 1980;
Fukushima, 2013], human-level perceptual performance
was approached and eventually attained in a number of
challenging visual perception tasks such as image recog-
nition with the aid of GPU acceleration [LeCun et al.,
1989; Ranzato et al., 2007; Graves et al., 2009; Ciresan
et al., 2011]. The applications quickly extended to other
computer vision tasks such as image segmentation [Cire-
san et al., 2012], producing a variety of impressive results
in visual information processing such as style transfer

[Gatys et al., 2016], opening new vistas in machine learn-
ing capabilities. The applications have been extended
to domains beyond vision, such as speech recognition
[Graves et al., 2013], language processing [Kim et al.,
2016], and reinforcement learning [Koutńık et al., 2013;
Mnih and others, 2015], often with striking performance,
proving the versatility and the significance of the ap-
proach in AI, urging us to consider whether the approach
may yield a general AI (called Artificial General Intelli-
gence (AGI) in some circles), and if so which problems
would have to be tackled to make deep learning approach
truly human-level AI that covers all aspects of cognition.

We analyze the approach from a 10.000 feet vantage
point, revisiting the idea of AI axiomatization. Al-
though, we are generally in agreement with Minsky that
the attempt to make AI like physics is likely a futile
pursuit, we also note the achievements of later theo-
rists who have applied Bayesian methods successfully.
We make no attempt to formalize any of our claims due
to space consideration, however we discuss relevant re-
search in cognitive sciences. Then, we apply the same
foundational thinking to deep learning critically probing
its intellectual foundations. The axioms, or postulates,
of AI, are examined with an eye towards whether the
current progress in deep learning in some way satisfies
them, and what has to be done to fill the gap. The
present paper may thus be regarded as an analytical,
critical meta-level review, rather than a comprehensive
review such as [Schmidhuber, 2015].

2 Postulates of General AI
One of the most ambitious mathematical models in AGI
research is AIXI [Hutter, 2007] which is a universal Re-
inforcement Learning (RL) model that can be applied to
a very large variety of AI agent models and AI tasks in-
cluding game playing, machine learning tasks, and gen-
eral problem solving. AIXI is based on an extension
of Solomonoff’s sequence induction model [Solomonoff,
1957; Solomonoff, 2008] which works with arbitrary loss
and alphabet [Hutter, 2003], making the aforementioned
induction problem fairly general. Hutter proves in his
book [Hutter, 2005] that many problems can be easily
transformed to this particular formulation of universal
induction. There are a few conditions that have to be



satisfied for a system to be called a universal induction
system, and even then the system must be realized in a
practical manner so as to be widely applicable and re-
produce the cognitive competencies of homo sapiens, or
failing that, a less intelligent animal.

The AIXI model combines Bellman equation with uni-
versal induction, casting action selection as the problem
of maximizing expected cumulative reward in any com-
putable environment. Although RL is a common ap-
proach in machine learning, AIXI had the novelty that
it focused solely on universal RL agents. When viewed
this way, it is obvious that AIXI is a minimalist cog-
nitive architecture model, that exploits the predictive
power of induction in RL setting, that does give the
model the kind of versatility noted above. Solomonoff
induction presents a desirable limit of inductive infer-
ence systems, since it has the least generalization error
possible; the error is dependent only on the stochastic
source and a good approximation can learn from very
few examples [Solomonoff, 1978]. AIXI model also re-
tains a property of optimal behavior, Hutter deliberates
that the model defines optimal, but incomputable intel-
ligence, and thus any RL agent must approximate it.
Therefore, our axiomatization must consider the condi-
tions for Solomonoff’s universal induction model, and
consequently AIXI, to be approximated well, but we be-
lieve additional conditions are necessary for it to also
satisfy generality in practice and within a versatile sys-
tem, as follows:

Completenes The class of models that can be ac-
quired by the machine learning system must be Turing-
complete. If a large portion of the space of programs is
unavailable to the system, it will not have the full power
and generalization properties of Solomonoff induction.
The convergence theorem in that case is voided, and the
generalization performance of Solomonoff induction can-
not be guaranteed [Solomonoff, 1978].

Stochastic Models The system requires an ade-
quately wide class of stochastic models to deal with un-
certainty in the real world, a system with only deter-
ministic components will be brittle. Induction is better
suited to working with stochastic models, one example of
such an approach is Wallace’s Minimum Message Length
(MML) model where we minimize the message length
that contains both the length of the statistical model en-
coding and data encoding length relative to model [Wal-
lace and Boulton, 1968; Wallace and Dowe, 1999].

Bayesian Prediction The system must compute
the inferences with Bayes’ law. The inference in
Solomonoff’s model is considered Bayesian. In neuro-
science, the Bayesian Brain Hypothesis has been mostly
accepted, and the brain is often regarded as a Bayesian
inference machine that extracts information from the
environment in theoretical neuroscience. Jaynes intro-
duced the possibility of Bayesian reasoning in the brain
from a statistical point of view [Jaynes, 1988]. The
Bayesian approach to theoretical neuroscience is exam-
ined in a relatively recent book [Doya et al., 2007].
Fahlman et. al introduced the statistically motivated

energy minimizing Boltzmann machine model [Fahlman
et al., 1983]; Hinton et. al connected the induction prin-
ciple of Minimum Description Length and Helmholtz
free energy introducing the autoencoder model in 1993
[Hinton and Zemel, 1993]. Bialek’s lab has greatly con-
tributed to the understanding of the Bayesian nature
of the brain, a decent summary of the approach detail-
ing the application of the information bottleneck method
may be found in [Bialek et al., 2001]. Friston has later
rigorously applied the free energy principle and has ob-
tained even more encouraging results, he explains the
Bayesian paradigm in [Friston, 2012]. Note that Hel-
moltz free energy and the free energy principle are re-
lated, and both are related to approximate bayesian in-
ference.

Principle of Induction The system must have
a sound principle of induction that is equivalent to
Solomonoff’s model of induction which uses an a priori
probability model of programs that is inversely and ex-
ponentially proportional to program size. Without the
proper principle of induction, generalization error will
suffer greatly, as the system will be corrupted. Like-
wise, as Solomonoff induction is more completely ap-
proximated, the generalization error will decrease dra-
matically, allowing the system to obtain one-shot learn-
ing first predicted by Solomonoff, achieving a successful
generalization from a sufficiently complex single example
without any prior training whenever such an example is
possible.

Practical Approximation Solomonoff induction has
an exponential worst-case bound with respect to pro-
gram size rendering it infeasible. This surely is not a
practical result, any approximation must introduce al-
gorithmic methods to obtain a feasible approximation of
the theoretical inductive inference model.

Incremental Learning The system must be capa-
ble of cumulative learning, and therefore it must have
a model of memory with adequate practical algorithms.
Solomonoff has himself described a rather elaborate ap-
proach to transfer learning [Solomonoff, 1989], however,
it was not until much later that experimental results
were possible for universal induction since Solomonoff’s
theoretical description did not specify an efficient al-
gorithm. The first such result was obtained in OOPS
system [Schmidhuber, 2004] demonstrating significant
speedups for a universal problem solver.

Modularity and Scalability The system must be
composed of parametrized modules that attend to differ-
ent tasks, allowing complex ensemble systems to be built
for scalability like the neocortex in the human brain. A
monolithic system is not likely to scale well, the sys-
tem must be able to adapt modules to distinct tasks,
and then be able to re-use the skills. A modular system
also provides a good base for specialization according to
modality and cognitive task, starting from a common
module description. In the human brain, there are both
functional regions and a complex, hierarchical modular
structure in the form of cortical columns, and micro-
columns.



Cognitive Architecture The system must have a
cognitive architecture, depending on modularity that
will address typical cognitive functions of learning, mem-
ory, perception, reasoning, planning, and language as
well as aspects of robotics which allow it to control
robotic appendages. This manner of organization is
modeled after the human brain, however, it seems es-
sential for any real-world AI system that requires these
basic competencies to deliver robust performance across
a sufficiently general set of cognitive tasks. Even if unlike
the brain, the system must have an architectural design,
or one that is capable of introducing the required archi-
tecture.

These reasonable and desirable properties of a com-
plete AI system lead naturally to a top-down de-
sign sometimes called an AGI Unification Architecture
among practitioners, if built around the floor plan of a
universal induction system such as AIXI. An example of
such an approach to designing a cognitive architecture
may be seen in [Potapov et al., 2016]. However, this is
not necessarily the only kind of solution. An adequate
architecture could also be built around a deep learning
approach; let us therefore proceed to its postulates.

3 Postulates of Deep Learning

Deep Learning is a particular kind of Artificial Neural
Network (ANN) research which shares some common-
alities and inherits some assumptions / principles from
earlier ANN research some of which may seem implicit
to outsiders. We try to recover these tacit or implicit
assumptions for the sake of general AI readership, and
also delineate the borders of deep learning from other
ANN research in the following:

No Free Lunch The well-known No Free Lunch the-
orem for machine learning [Wolpert, 1996] implies that
there can be no general learning algorithm that will be
effective for all problems. This theorem has generated a
tendency towards model-based learning in ANN research
where the researcher tries to design a rich network model
that covers all contingencies in the domain but uses in-
sights into the problem domain and thus the experiment
does not suffer from the unreasonable large search space
of a model-free learning method. From image process-
ing to language, this particular blend of specificity and
generality seems to have guided deep learning quite suc-
cessfully and resulted in impressive outcomes. The speci-
ficity determined by the ANN researcher may be likened
to innateness in cognitive science. Note that AGI theo-
rists have argued otherwise [Everitt et al., 2014], there-
fore this heuristic principle remains arguable.

Epistemic Non-reductionism This is the view that
loosely depends on Quine’s observation that epistemic
reductionism often fails in terms of explanatory power
for the real world [Quine, 1951]. When we look at a deep
learning vision architecture, we see that the irreducible
patterns of visual information are indeed stored as they
are useful however not overmuch; the system does not
store every pattern much like our brains. Epistemic irre-

ducibility is a guiding principle in deep learning research,
and it is why deep learning models are large rather than
small and minimalistic as in some ANN research.

Eliminative Materialism Churchland’s philosophi-
cal observation that the brain does not deal in any of
the folk psychological concepts in cognitive science lit-
erature, but must be understood as the activation state
and trajectory of the brain [Churchland, 1981], plays a
fundamental intellectual role in the deep learning ap-
proach, where we shift our attention to brain-like rep-
resentations and learning for dealing with any problem,
even if it looks like a matter of propositional logic to us.

Subsymbolic & Distributed Representation Ex-
pressed in detail in the classical connectionist volume
[Rumelhart et al., 1986], this principle is the view that
all representations in the brain have a distributed, real-
valued representation rather than discrete, symbolic rep-
resentations that computer scientists prefer in their pro-
grams. Sparse Coding hypothesis has been mostly con-
firmed in neuroscience, therefore we do know that the
brain uses population codes that are sparse, distributed,
and redundant. Unlike a symbolic representation, the
brain networks are fault-tolerant and redundant, and
deal with uncertainty at every level. Subsymbolic rep-
resentations are more robust and better suited to the
nature of sensory input. However, we also know that
grandmother cells exist which may correspond to pred-
icates, which are still best modeled as non-linear detec-
tors, or ReLu units, in a neural network.

Universal Approximation The universal approxi-
mation theorem [Hornik, 1991] for multi-layer feed for-
ward neural networks underlies the heuristic of using
many hidden layers in a deep learning architecture. The
theorem shows that a multi-layer neural network can
approximate arbitrary continuous real-valued functions.
Therefore, the system is capable of representing any
mapping under mild assumptions, including those with
irregular features forming a synergy with the epistemic
non-reductionism postulate.

Deep Models The number of layers in a feed forward
network, or the circumference of a Recurrent Neural Net-
work (RNN) must be greater than 3, meaning multiple
hidden layers in a multi-layer feed forward network, or
an RNN with complex topology. Model depth avoids
much of the criticism in Minsky and Papert’s critical
book on neural networks that showed perceptrons cannot
learn concave discriminants [Minsky and Papert, 1969],
and its later editions that extend the criticism to multi-
layer models. In today’s ANN applications we observe
all manners of intricate discrimination models were suc-
cessfully learnt, however shallow networks will still not
avoid Minsky’s observations. A complexity analysis also
supports that increasing depth can result in asymptot-
ically smaller networks for the same function represen-
tation [Telgarsky, 2016], implying that deep models are
fundamentally more efficient.

Hierarchy and Locality A distinguishing feature of
deep learning is that it contains local pattern recogni-
tion networks and a hierarchy of these pattern recog-



nition circuits that affixes the local and global views.
Thus, a sequence of convolutional and pooling layers
have been a staple of image processing applications in
deep learning as the convolutional layer is basically a set
of texture recognition patches, and downsampling via
max-pooling gives us a dimensionality reduction and the
ability to hierarchically combine pattern recognizers ef-
ficiently. This organization was inspired by 2d image
processing in the visual cortex, however many domains
can benefit from the same organizational principle since
they apply to any sensory array. The principle is also
valid for domains that are not directly sensory arrays,
but maintain a similar topological relation. The princi-
ple also has great synergy with the depth principle be-
cause the network tries to capture perceptually salient
features and avoids learning irrelevant patterns making
it possible to increase network depth which avoids Min-
skyan objections even more effectively.

Gradient Descent Perhaps the most common fea-
ture of deep learning is that a variation of back prop-
agation or gradient descent is used to train the model.
This is required since any other way to train the large
networks in deep learning research would be infeasible.
Other methods such as variational learning and MCMC
tree search have been applied in deep learning research,
however this principle has remained fairly constant as
it is necessitated by other principles above, which may
result in billions of real valued parameters to be trained.

Dataflow models & SIMD acceleration Since the
number of parameters to be trained is large, exploiting
data-parallelism through SIMD-based accelerators such
as GPU’s, and later executing data-flow representations
on FPGA’s have proven to be an essential factor for deep
learning research. This property of deep learning corre-
sponds to the massive parallelism property of the brain.

4 Shortcomings of Deep Learning

Although deep learning has generated phenomenal re-
sults, it also has some shortcomings that are being
worked on. The most common limitation is that a typ-
ical deep learning architecture requires on the order of
10,000 or more examples. Some of the largest experi-
ments have used millions of examples, therefore this was
simply not an issue that was focused on. It may well
be the case that this is a fundamental shortcoming of
deep learning, however, researchers have tried solutions
such as using stochastic gradient over the entire set of
samples, as a usual statistical approach would necessi-
tate, instead of running BP in epochs, which imitates
the brain’s online learning capability. Another common
problem is that most deep learning uses supervised learn-
ing, which presents a problem in terms of constructing
many labeled/annotated examples for every new prob-
lem. Autoencoder [Hinton and Zemel, 1994] is an un-
supervised learning model, and it has many variations
and applications in deep learning, however, most appli-
cations still require a good deal of hand crafted data. A
strange problem persists in deep learning systems, which

makes them easy to fool in ways that are not intuitive to
humans, such as a simple perturbation causing a misclas-
sification, an intuitively unrelated artificial image recog-
nized as a natural image, or a specially crafted patch on
an unrelated image causing a misclassification. These
might either be symptoms of fundamental limitations,
or they might be ameliorated with better deep learning
models. We observe that these issues look much like
overfitting, i.e., poor generalization performance.

5 Extending Deep Learning

When we contrast the general AI postulates and deep
learning postulates, we see some interesting overlap and
also some areas where deep learning requires a good deal
of development. A deep learning system has one sort of
completeness that stems from the universal approxima-
tion theorem, and dataflow models can be augmented
with arbitrary computational units such as the Neural
Turing Machine model [Graves et al., 2014], and the later
Differentiable Neural Computer model [Graves and oth-
ers, 2016] that augments neural networks with external
memory. Program class extensions of this sort may be
an integral part of next-generation deep learning. Re-
cent proposals for non-Euclidian embedding of data also
enhance generality of deep learning models [Bronstein et
al., 2017].

It is possible to design deep architectures for rigorous
stochastic models, which is an important extension to
deep learning that will increase robustness.

Typically, deep learning lacks a principle of induction,
but at the same time a stochastic model of induction is
implicit in deep learning as the information bottleneck
analysis of deep learning shows [Tishby and Zaslavsky,
2015], where we can view deep learning as a lossy com-
pression scheme that forgets unnecessary information.
Such theories will lead to better generalization perfor-
mance. [Kawaguchi et al., 2017] applies random matrix
theory to generalization in deep learning, and introduces
a new regularization method for improving generaliza-
tion.

Progressive deep learning architectures add layers
as necessary, substantiating an important analogy to
SVM’s function class iteration [Rusu et al., 2016]. Much
richer forms of induction may be beneficial for im-
proving a deep learning network’s generalization power.
The training procedure in deep learning is efficient but
only locally optimal, in the future a combination of
neuro-evolution and gradient descent may outperform
gradient descent and approximate universal induction
better. Evolution has already been applied to auto-
mated design of deep networks [Miikkulainen et al., 2017;
Petroski Such et al., 2017]. Neuro-evolution has been
shown to be effective in game playing [Risi and Togelius,
2017] and other tasks that are difficult for deep learning,
and therefore it might displace deep learning methodol-
ogy altogether in the future.

Deep learning architectures gained memory capabil-
ity with the LSTM unit, and similarly designed memory



cells, however, long-term memory across tasks remains
problematic. A good realization of algorithmic mem-
ory in deep learning is Neural Task Programming (NTP)
[Xu et al., 2017] which achieves an indexical algorithmic
memory based on LSTM and the ability to hierarchically
decompose skills which has been successfully applied to
robotics tasks. Progress in the direction of NTP is likely
to be a major improvement for deep learning, since with-
out cumulative and hierarchical learning intelligence is
highly restricted.

Recently, progress has been made in the matter of
modularity with Hinton’s update of Capsule Networks,
that models the cortical architecture for visual tasks
[Sabour et al., 2017]. Capsule Networks adds dynamic
routing between visual processing modules with affine
transformations, enhancing invariance and defines neural
modules as capsules that may be arranged like neurons.
Capsules correspond to visual entities in the model,
therefore capsules that recognize a face decompose into
eyes, a nose, lips, and so forth. The step from mono-
lithic to modular deep learning is as powerful as the
step from shallow to deep networks, hence this line of
research is a significant extension of deep learning. A
similar line of research is advanced by Vicarious, which
propose a recursive neural architecture that exploits lat-
eral connections accounting for distinct feature sets such
as contour and surface, and the hierarchical representa-
tion of entities like in Capsule Networks [George et al.,
2017]; their system can reportedly break CAPTCHA’s.
Hawkins proposes a new cortex architecture that intro-
duces pyramidal neurons, active dendrites, and multi-
ple integration sites, identifying cortical computations
for hierarchical sequence memory, and it intriguingly
involves dendritic computation [Hawkins and Ahmad,
2016]. Capsule Networks might be enhanced to provide
a similar dendritic model eventually, or capsule-like spe-
ciation might be ported to Hawkins’s model.

Cognitive architectures built on symbolic concepts
may not be readily applicable to deep learning, how-
ever, modeling the functional anatomy of the brain cre-
ates much needed synergy with neural networks. For
instance, in Deep Mind’s I2A model [Weber and others,
2017], we see a direction towards capturing more brain
function in the form of imagining future states, while
PathNet presents a modular, reflective learning system
that can recombine network modules by evolving paths
over the network [Fernando et al., 2017]. Both neural
architectures exhibit progress towards a more complete
cognitive neural architecture. Another recent direction
is the relational networks that model reasoning [Santoro
et al., 2017]. Conceivably, neural models of fundamen-
tal cognitive functions may be developed with a similar
methodology, and bound in a connectionist agent archi-
tecture. Likewise, the active inference agent of [Friston
et al., 2017] with deep temporal models captures the
essentials of functional anatomy based on hierarchical
probabilistic models, and even gives us a fully unsuper-
vised agent model that is quite intriguing from a scien-
tific perspective.

6 Discussion and Future Research

Despite recent criticism raised against deep learning
[Marcus, 2018], almost all of the postulates of general
AI we have outlined seem achievable, however, with ma-
jor improvements over existing systems. While it is en-
tirely possible for a traditional symbolic-oriented system
to achieve the same performance, the advantages of deep
learning approach cannot be neglected, and the possible
extensions to deep learning discussed may also amelio-
rate the common shortcomings we summarized. Another
combination that might work is the combination of the
symbolic AI approach with deep learning. In some cir-
cles, researchers pursue a mathematical AI unification
approach (like AIXI approximations), however, the mer-
its of such an approach are yet to be proven experimen-
tally over deep learning. It seems prudent to at least try
to integrate deep learning faithfully in existing AI archi-
tectures, or for new architectures, attempt to construct
them solely on a neural architecture. In the future, we
expect a convergence of more powerful training meth-
ods and deep architectures, taking us to a more model-
free learning system, and more capable, modular neural
agent architectures inspired by neuroscience.
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