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Abstract

Human intelligence relying on the brain informa-
tion processing has two aspects of implicit memory
and explicit memory functions. A possible hypoth-
esis is that the human intelligence is a consequence
of the fusion of those two aspects and then a ques-
tion is addressed as to how the flexibility of making
a frame of thinking depending on the context is re-
constructed by the fusion. In the assumption that an
autonomous classifier provides primitive labels in-
dicating parts in a picture and a generalizer to repre-
sent the whole in an abstract way, the problem that
remains unsolved is how semantic information can
be coordinated to reach the conclusion to connect
parts and the whole. Bongard problems question
such an issue in the form of logical picture puzzles
to request to seek the unique minimum description
of pictures to discriminate two groups, throughout
an abductive reasoning. In the present study, we in-
troduced methods of the semantic web technology
to treat a hierarchical semantic information arisen
in the abduction and the logical reasoning to ob-
tain the conclusion and then proposed a compu-
tational model for solving the problems by using
an architecture of hierarchical abductions. Possible
combinations of primitive descriptions like ‘circle
in a triangle’ is arisen as a test hypothesis to repre-
sent them commonly and then it is verified whether
it matches all pictures totally in each group. The
tested hypotheses from two groups are compared
and it will be the solution if there are logically dif-
ferent, such as ‘circle in a triangle’ v.s. ‘triangle in
a circle.’ Our computer experiment showed that ten
selected Bongard problems were solved in the pro-
posed framework. It indicates that the semantic in-
formation coordinator works well to solve a type of
the frame problem, by coupling with autonomous
classifier and generalizer. The framework may con-
tribute to the design of the general artificial intel-
ligence in part, especially on coordination against
autonomy in semantics.

1 Introduction
Recently, multi-layer neural network models and machine
learning approaches for computer vision and the first-order
symbol grounding or automatic meta-labeling in the lan-
guage processing accompanied with massive digital data
with an amount of computer hardware performances have
made prominent progress in mimicking a part of abilities
of humans [Hernández-Orallo et al., 2016; Taniguchi, 2017],
which are called Artificial Intelligence technologies or
‘AIs’ simply and highlighted as ‘technological singularity’
[Kurzweil, 2014]. It sometimes exceeds human abilities
related to the memory capacity and information process-
ing speed as is demonstrated in human-machine matches
of board games [Silver et al., 2016]. However, the realiza-
tion of mechanisms to reproduce higher-level abilities re-
mains unsolved, such as sharing human values with re-
spect to emotional reactions [Ledoux, 1998], understanding
human intentions and semantics in communication without
explicit background information [Minsky, 1986] and adap-
tivity/flexibility of making an arbitral frame of thinking to
solve the facing problem depending on individual ‘situation,’
known as ‘frame problem’ [McCarthy and Hayes, 1969;
Shanahan, 2016]. Those abilities are autonomously emerged
in the human brain and therefore the generality and auton-
omy in AIs beyond conventional machine learning schemes
are highly expected [Pfeifer and Bongard, 2007]. In consid-
eration of semantics in higher cognitive functions, a system-
atic progression can be recognized based on the theoretical
advancement of the symbol logic and its implementation in
the form of the semantic web technology, with respect to
AI symbolic approaches in 1970-1980 [Forbus et al., 1998;
Mitchell, 2003; Chen et al., 2016; Johnson et al., 2017].

A possible hypothesis to answer the question why the hu-
man brain is flexible and autonomous for generating an ap-
propriate frame of thinking is that it is realized from an inte-
gration of different types of computations, which are briefly
classified into two domains related to implicit memory and
explicit memory. In the former one, the procedural memory,
for example, is maintained the basal ganglia and related brain
regions, which is considered to be reproduced by the rein-
forcement learning scheme, while the human has no aware-
ness of what is going on in the learning process but posses
abilities to discriminate what it is as an automatic classifier
and to take the best action to maximize the benefit, which
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Figure 1: An example of the picture in a BP, which is repre-
sented by redundant and polysemic representations in word,
as D. R. Hofstadter discussed in his book [Hofstadter, 1979].

Figure 2: ‘A kind of circle’, or ‘circular shape with notches.’
An abstraction and then it becomes a simple representation.

can be formulated by the Markov process. In contrast, the
latter function is associated with human consciousness. The
mechanism of how the consciousness emerges in the brain
is still an unreached problem, or mystery, in spite of our
tremendous efforts of integrative research fields, while there
are significant ambitions in constructive and embodiment ap-
proaches to build it artificially. In the present study, the work-
ing hypothesis is addressed that the flexibility of making a
frame of thinking depending on the context is reconstructed
by the fusion of implicit and explicit memory functions, as
the basement assumption, and then it allows us to focus on
a conscious process of how the brain simply represents what
happen in the world, i.e. analogy by words. In particular,
the logical reasoning process in such representations can be
considered as a dynamic process from the low-level meta-
label generation to semantics observed in the higher cognitive
functions [McCarthy and Hayes, 1969; Forbus et al., 1998;
Mitchell, 2003; Chen et al., 2016; Johnson et al., 2017]. Ac-
cording to the advancement of semantic web approaches, se-
mantic information and its relevance to the brain information
processing can be discussed in the framework of computa-
tional models based on the theory of logic.

In the assumption of a high-quality visual processing will
be treated appropriately by algorithms based on probabilistic

(a)

(b)

Figure 3: (a) BP #21 Small figures versus large figures; (b)
BP #175 small objects can glide through the orifice versus
small objects cannot glide through the orifice

models, i.e. machine learning scheme, the target problem will
be addressed as a dynamic association among possible items
to represent what it is in a minimum way and to maximize
the fitness for requirements in the context. As shown in Fig.1,
there are multiple ways to represent what the picture is, which
is consisted of redundant and polysemic representation in
words [Hofstadter, 1979] (Fig.2). The question arises what is
the best representation in the current context and how we can
solve the problem. According to the issue, Hofstadter intro-
duced Bongard problems in his book [Hofstadter, 1979] as a
benchmark to test an intelligent level of the agent, in the form
of the logical picture puzzle. The puzzle requires a coupling
between meta-cognition and logical reasoning for providing
a higher level of analogy like human naturally do and it was
originally proposed by Mikhail M. Bongard [Bongard, 1970].
In this problem, three core architectures are considered to co-
operate together, 1) an auto-generative system to represent
characteristics in the target picture with primitive forms (au-
tonomous label generator), 2) a semantic network coordinator
to find an appropriate representation without redundancy (co-
ordinator/evaluator), and 3) an analogy maker to bind a set of
the characteristics and to set a consistent representation in a
simple form by ignoring unnecessary parts to conclude (gen-
eralizer) as illustrated in Fig.2. In other words, autonomy and
generality are not enough for designing an intelligent agent to
solve the Bongard problems and then the architecture design
will be completed to add a complementary architecture as the
semantic network coordinator to mediate two systems.

The article was organized following sections. Section 2
provides an overview of the Bongard problems and referred
related past studies. Our theoretical framework based on the
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Figure 4: General indexing of a Bongard Problem

semantic web technology was introduced in Section 3. Sec-
tion 3.1 briefly explained about data format and rule descrip-
tion for the logical reasoning and the implementation design
specifically for the Bongard problems was discussed in Sec-
tion 3.2. Section 4 demonstrated results of the proposed sys-
tem that solved 10 selected Bongard problems. Finally, in
Section 5, we discussed the obtained results and the future
scope of the present approach.

2 Problem Definition
Bongard problems (BPs) are a set of 100 visual puz-
zles introduced in the mid-1960s by the Russian scientist
Mikhail Moiseevich Bongard in his book Pattern Recognition
[Bongard, 1970] (Fig.3). This set of two-dimensional graph-
ical puzzles involves pattern recognition, categorization, and
logical decision-making tasks to infer the similarity and dis-
similarity that govern them. Every BP inherits the quality of
universality of unique solutions. Although BPs are an excel-
lent means to validate the interaction of human vision and
cognitive abilities, they impose tremendous challenges in the
field of AI in mimicking human logical thinking abilities.

A BP consists of 12 boxes, with a lump of six boxes on
the left side and another lump of six boxes on the right side.
The goal of a BP player is to find contradictory rules to log-
ically discriminate the two given lumps, which means that
the rule applicable on one side of the BP will not hold true
for the other side. The BP solution is unique and obtained
from predictive logical inferences in a ill-posed problem. As
shown in Fig.3, the solution varies from a combination of
primitive graphical features (such as texture and shape) to the
spatial relationship (such as within, below, and above), nu-
meric count (such as number of intersections and number of
objects) and further abstractions (Fig.2). At primitive BPs,
the logical inference starts from to consider about the simi-
larity and dissimilarity and flexible abductions are required in
cases with a higher level of analogy. In the inference process,
an autonomous generation of representations is considered in
a framework of the solver as a systematic recursive way of
thinking as shown in Fig.3(b) to reproduce meta-cognition or
the context-based description (Fig.5).

Six boxes of the BP is separated by a line as left and right
sides. For the mathematical formulation, each side in a given
BP is indexed as Li and Ri (i = 1, · · · , 6) (Fig.4). As shown
in Fig.1, each box holds potentially a potentially infinite num-
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Figure 5: (a) Reformulated process of Hofstadter’s idea to
solve BP ([Hofstadter, 1979]); (b) An overview of solution to
a BP

ber of properties per feature, and the interrelations between
each preexisting property also lead to a new set of dependent
properties, as analogy. Thus, if it is possible to reproduce
a BP solver artificially, the system can be considered to to
mimic the human decision-making ability in ill-posed prob-
lems, by the performance to find a simplest representation
from an infinite number of possible combinations in a form
of the set of properties.

If a problem is in BPs, there exist two sets to be determined
by contradictory rules each other. Therefore, if SA and SB

are assumed to be the sets, every picture in left boxes is a
element of SA and every picture in right boxes is a element
of SB and then there is no overlap, which is formulated as

SA ∩ SB = ∅
s.t. Li ∈ SA, Ri ∈ SB (i = 1, · · · , 6).

(1)

For example, in the case of Fig.3(a), if rules are given as
‘there exist a triangle’ and ‘the number of circles is larger
than one’ as a first abduction, the result is Li ∈ SA (i =
{1, 2, 3, 5, 6}), Ri ∈ SA (i = {1, 2, 3, 4}), Li ∈ SB (i =
{3, 4}), Ri ∈ SB (i = {4, 6}) and L4 ̸∈ SA ∧ L4 ̸∈ SB .
Thus, it does not satisfy Eq.1. In the second abduction, if
rules are given as ‘there exist shapes with different sizes’ and
‘the shape size is consistent at all’, the result becomes much
better as Li ∈ SA (i = {1, 2, 4, 5, 6}), Ri ∈ SB (i =



{1, 2, 3, 4, 5, 6}) and L3 ̸∈ SA ∧ L3 ∈ SB ; however the
performance of the logic puzzle is not evaluated according
to the error rate numerically and then it is clearly rejected as
the BP solution. Finally, the solution is obtained as ‘there ex-
ist a small shape’ and ‘there are no small shapes’ under the
complementary assumption of ‘small means that the largest
length of sides, or diameter, is smaller than one-fifth of the
base length of the picture area’ as a hidden knowledge. The
solution satisfies Eq.1 without any exception.

The fact implies that the BPs require relative information
(dependent properties) to solve. These relationships can be
described as follows:

xL1 = (xL1
1 , xL1

2 ...., xL1
n , ....) (2)

xR1 = (xR1
1 , xR1

2 ...., xR1
n , ....) (3)

where

Properties(xL1) = (IP objects, DPwithin objects)L1

(4)

Properties(xR1) = (IP objects, DPwithin objects)R1

(5)
Each box in a given BP have multiple object instances

(Eq.2 and Eq.3) to solve. In principle, every picture of the
box can not only has an infinite set of independent properties
(IP) to represent how the picture is categorized, such as circle
or triangle (as characteristics of the object) but also has de-
pendent properties (DP) as determined by relations with other
objects such as smaller/larger, close/far and left/right and so
on. In the consideration of the properties in Fig.3 (a), the box
R2 can be described as follows:

xR2 = (Line,Circle, T riangle, .......) (6)

properties(Circle) =
((Rounded, ..independent), (leftOf, ..dependent))

(7)

It is because that ‘triangle’ can be decomposed of three
lines. In the same way, in the process of the abstraction, or
simplification, Fig.3 (b) requires to think us ‘orifice’ by ignor-
ing difference in color, shape (rounded or edged) and detail
textures. Since possible BP solution are distributed in infinite
numbers of axes, it is difficult to find the solution by using
random search algorithms targeting spaces with a fixed num-
ber of axes. To reach the solution in a finite time, a grad-
ual increase of the number of properties for the combination
(search space expansion) is required and associated with a
contraction of space dimension by abstraction (search space
contraction) as a optimization problem. In the present study,
we hypothesized that the property management for control-
ling the space dimension and the logic rule implementation
are well organized in an ontology-based approach as a BP
solver.

For the sake of simplification, we assumed that the image
segmentation and feature extraction are automatically pro-
cessed prior to the proposed system and then this study fo-
cused on the rule generation and evaluation process with re-
spect to the judgement as Eq.1. It highlights the importance
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of effective knowledge representation for making logical in-
ferences for solvers of BPs.

3 Proposed Framework for Solving BPs
3.1 Ontology-based scheme for knowledge

representation
Each box, on either side, of a given BP holds a potentially
infinite number of independent and dependent properties. To
enable the machine to understand this massive amount of raw
data obtained from a BP, we need a semantic knowledge rep-
resentation of the raw concepts and their flexible relation-
ships.

Ontologies can represent the knowledge in an organized
and machine-understandable format with concepts and rela-
tionships among the obtained data instances. For consistent
modeling of data, the context descriptions are designed using
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the Resource Descriptive Framework (RDF). To express rules
and logical expressions for inferring the perceived visual data,
Semantic Web Rule Language (SWRL) is used along with
SPARQL Protocols and RDF Query Language (SPARQL).
The SPARQL querying tool helps the semantic web query
static RDF knowledge in a more interactive fashion. Ontolo-
gies are usually expressed as the following entities:

• Classes: These are the main instances of the domain
of interest and play a vital role in defining an ontolog-
ical structure (such as Web Ontology Language [OWL]:
shapes; Owl: texture).

• Properties: Properties in an ontological knowledge base
fall into three distinct categories, namely object prop-
erties, data properties, and annotation properties. They
define the relationship-based predicates for the RDF data
format (such as ‘LeftOf’ and ‘InBetween’)

• Instances: These are the subjects/predicted-individuals
in the given domain (such as shape name, i.e. ‘Circle’
and ‘Square’).

• Rules: These are the logical statements governing the
categorization and carrying out of logical inferences in
the ontology.

3.2 Analysis of BPs using ontology
In his book Gódel, Escher, Bach: An Eternal Golden
Braid, Douglas R. Hofstadter emphasized a recursive context-
based approach as a possible solution to solving BPs
[Hofstadter, 1979]. He discussed about the necessity of “con-
cept networks”, in which all the data are interlinked in a way
that indicates their interrelations; however he did not yet com-
plete to propose an actual solution to connect an implemen-
tation into machines. Therefore, his hypothesis on the BP
solver is of interest to researchers who are interested in the
limitation of the machine intelligence and the possibility of
the reproduction of the human intelligence, while the process
of carrying out similarity checks and funneling the inferred
possible relationships between either side of the BP still re-
main unsolved (Fig.5).

As a first step to dig into the point of view, we proposed
a way of the implementation with an ontology-based knowl-
edge representation with large-scale interoperability and ax-
ioms, which can be easily extend for general use. As shown
in Figure 6, our hypothesis verified by using a three-level hi-
erarchical model as illustrated in Fig.6.

Table 1: Algorithm 1

Cross checking dissimilarity to detect possible solution

Step−1: Select RuleA
if(RuleA satisfies (L1,L2,L3,L4,L5,L6))

if (RuleA consistent in SideX of BP)
(Inference − > SideX PredicateX Object1)
else (GOTO Step−1)

Step−2: Select RuleB
RuleB satisfies (R1,R2,R3,R4,R5,R6)

if (RuleB consistent in SideY of BP)
(Inference − > SideY PredicateY Object2)
else (GOTO Step−2)

(SideX PredicateA Object1)(SideY PredicateY Object2)
if (Object1 isSameAs Object2)
RuleA and RuleB are not consistent for Left
and Right sides respectively
else if (Object1 DifferentFrom Object2)
RuleA and RuleB is consistent for SideX and
SideY sides respectively
else (GOTO Step−2)

else (GOTO Step−1)

In our proposed model, Static ontology is the basic knowl-
edge structure about shapes and all the possible general
knowledge of the environment. This was created to repli-
cate the high-level cognitive state (long-term memory) of the
human brain. The dynamic analogy-making block provides
the visual context-based information, which varies depend-
ing on the type of BP. This block mimics the lower-level cog-
nitive state of the human brain by providing the ontological
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knowledge base with instantaneous processed visual informa-
tion (using Java-based graphical user interface [GUI]).

Since the complexity related to a BP increases with in-
creases in visual instances and their properties, a meta-
description (description of description) is formulated at the
dynamic memory block. The logical reasoning capability and
inherited knowledge about events and shapes are represented
in the form of semantic rules and queries. We used the OWL
reasoner based on descriptive logic for reasoning on the ob-
jects (visual instances) and their relationship in a wider per-
spective. As shown in Fig.6, in our approach, the inference
of the best-fitting rule, as the most promising solution to a
given BP, is an outcome of the logical intersection between
the metadata-based description and the logical rules govern-
ing a BP. Fig.7 shows the overview of the logical decision sys-
tem using the dynamic ontological knowledge base to make
logical inferences governing the possible solution for a given
BP. The operations carried out in our framework are as fol-
lows:

1. The visual instances are obtained from the GUI-based
receivers and are imported into a static ontological
knowledge base.

2. The SWRL rule reasoner is formulated in a way to cre-
ate new inferred properties from the perceived instances.
This rich knowledge base is then fed into the SPARQL
query engine.

3. If the solution to the given BP can be formulated at this
stage, the predictions are generated. Otherwise, a recur-
sive process of inference is carried out as follows in the
steps below.

4. The SPARQL query engine, along with SWRL rules, ac-

cess the knowledge base to retrieve information about
the instances and their respective classes. This helps in
the categorizing objects and characterizing the new in-
ferred properties.

5. The SWRL rule reasoner adds some inference based on
the respective side of the BP―for example, detecting the
common properties and understanding the dissimilar in-
stances.

6. SWRL rule-based reasoning is performed on the updated
knowledge base, and new inferences are made.

7. The SPARQL query retrieves all the relationships for ev-
ery instance from all the 12 boxes.

8. SWRL checks for the possible solution based on the
new inferred knowledge base (outcomes of the SPARQL
query). If the solution to the given BP can be formu-
lated at this stage, the predictions are outputted. The
newly added inferred knowledge is removed from the
static ontology-knowledge base.

9. If the solution to the given BP could not be formulated,
the above-mentioned recursive process of inference is
carried out again.

Here, the context-based decision-making system mainly
consists of the visual instances receiver, a dynamic onto-
logical knowledge base, logical rules, and query engines.
Figure 6 represents the visual notation of the static onto-
logical knowledge base. This ontological knowledge base,
along with logical rules and queries, coincides with Hof-
stadter’s idea of concept networks and sameness detector
[Hofstadter, 1979]. Using ontology, we formulated a back-
and-forth interaction between each individual and their de-



Table 2: Examples of SWRL rules.

(LeftSide1 Has ?sha1) ∧ (LeftSide2 Has ?sha2)
∧(LeftSide3 Has ?sha3) ∧ (LeftSide4 Has ?sha4)
∧(LeftSide5 Has ?sha5) ∧ (LeftSide6 Has ?sha6)

#1 ∧(?sha1 Is Same As Quadrilateral) ∧ (?sha2 Is Same As Quadrilateral)
∧(?sha3 Is Same As Quadrilateral), (?sha4 Is Same As Quadrilateral)
∧(?sha5 Is Same As Quadrilateral) ∧ (?sha6 Is Same As Quadrilateral)
− > (Left Consists of Shape Quadrilateral)
(Left Consists of Shape ?a) ∧ (Right Consists of Shape ?ab)

#2 ∧(?a Is Different From ?ab) ∧ (?ab Is Different From Quadrilateral)
− > (Left Has Infered Shape ?a) ∧ (Right Has Infered Shape ?ab)
(Left Consists of Shape ?a) ∧ (Right Consists of Shape ?ab)

#3 ∧(?a Is Different From ?ab) ∧ (?ab Is Same As Quadrilateral)
− > (Left Has Infered Shape ?a) ∧ (Right Has Infered Shape ?ab)
(Left Consists of Shape Empty) ∧ (Left Consists of Shape null)

#4 ∧(Right Consists of Size null)− > (Left Has Infered Shape Empty)
∧(Right Has Infered Shape NotEmpty)

Figure 9: Ontology based concept network

scriptions (where every node is linked to every other node via
properties).

It is generally known that the visual cortex in humans helps
in the processing of visual information and object recogni-
tion. But it is still unclear how the human brain can select a
set of minimum possibilities from a wider set of information
in the real world. Such conscious recognition of shapes, col-
ors, and so on from an output of visual cortex is a challenging
mystery. We implemented a funneling-based approach to nar-
row down the inferences (i.e., taking the minimum possible
decisions from multiple relations).

As shown in Figure 8, the logical rules are formulated in a
way to take different levels of inferences to arrive at the most
suitable solution. The logical description to Figure 8 is as
described in Table 1.

4 Result
In the present study, we formulated a Jena-based ontology
was formulated to make machines mimic human cognitive

abilities in solving BPs. The static ontological knowledge
had 1094 axioms and 38 properties. Twenty-nine logical rules
were formulated for logical evaluations. Some of the SWRL
rules are provided in Table 2. These SWRL rules are em-
ployed to detect the differences in shapes (quadrilaterals and
other shapes) that are present at the given two sides of a BP.
The SWRL rules in Table 2 are presented in RDF format
(Subject, Predicate and Objects [SPO] format). We evalu-
ated this model on a subset of BPs (as shown in Table 3). As
mention previously, our main focus was to design a cognitive
model for logically inferring the concepts for solving a BP,
rather than focusing on computer vision techniques. In our
study, a Java-based GUI was used to obtain multiple inputs
from a BP solver (human perceived data), as a replacement
for the image processing unit. The queried visual informa-
tion was then converted in RDF form in OWL to depict the
short-term memory. The inputs for each box consisted of type
of shapes, shape counts, texture (including outlined and filled
shapes), size, positional information, and information-related



Table 3: Solution of BPs through ontological implementation.

BP-number Number of Inferences T (sec.)
BP #1

First stage Inference = 37
Left Has Infered Shape Empty Second stage Inference = 12 2.468

Right Has Infered Shape NotEmpty Third stage Inference = 2
BP #2

First stage Inference = 112
Left Has Infered Size Large F igure Second stage Inference = 12 12.985

Right Has Infered Size Small Third stage Inference = 2
BP #3

First stage Inference = 102
Left Has Infered Texture No Filling Second stage Inference = 12 12.823

Right Has Infered Texture Dark Filling Third stage Inference = 2
BP #6

First stage Inference = 144
Left Has Infered Shape Triangle Second stage Inference = 12 20.745

Right Has Infered Shape Quadrilateral Third stage Inference = 2

characteristics of the shape.
According to psychological experiments with 31 human

subjects by Harry Foundalis [Foundalis, 2006], he reported
the BPs were solved by 50% students approximately and he
classified as easy, moderate and difficult BPs. In our exper-
iment, 9 easy BPs and 1 moderate BP were applied to the
verification test of our proposed system. As shown in Ta-
ble 3, the system in our ontological approach successfully
demonstrated that the 10 BPs were solved and replied the re-
sultant message as the concluding logic to discriminate two
groups. As demonstrated in the computer experiment, the
perceived information for each BP (from the GUI-based vi-
sual instances) underwent funneling and regressive filtering
through logical rules to obtain distinction between the left and
right sides of a given BP.

5 Discussion
In the same proposed system, it is possible to develop
with an automatic generation of the static ontology-based
knowledge and SWRL rules, for the generalization of the
solver for all 100 BPs. In our hypothesis, we assumed
three core architectures as 1) an auto-generative system to
represent characteristics in the target picture with primitive
forms (autonomous label generator), 2) a semantic network
coordinator to find an appropriate representation without
redundancy (coordinator/evaluator), and 3) an analogy maker
to bind a set of the characteristics and to set a consistent
representation in a simple form by ignoring unnecessary
parts to conclude (generalizer) as illustrated in Fig.2 and then
dealt with the issue whether the idea of the concept network
can be implemented and how it effectively solve the BPs. On
the other hand, autonomy and generality are placed in issues
that we need to tackle. As discussed in Fig.3 (b), a question
of what is ‘orifice’ which is defined as ‘an opening, as of a
pipe or tube, or one in the body, such as a nostril.’ from the
dictionary, requires the cognitive function to think an abstract
way. It is determined by the relational/relative information in
cases of BPs, as we demonstrated preliminary, while a further

implementation is necessary to involve a probabilistic model
[Hernández-Orallo et al., 2016; Saito and Nakano, 1995;
Taniguchi, 2017; Salameh et al., 2014].

The concept network was discussed in past studies
as models and psychological analyses [Foundalis, 2006;
Linhares, 2000]. In comparison with those models and
studies, our computational model was build systematically
by using the semantic web technologies and reasoning
architectures [Maarala et al., 2017; Durbha and King, 2005;
Zand et al., 2016; Johnson et al., 2017], which allows us to
clarify the future capability to be close in on the human intel-
ligence [Kurzweil, 2014] or an inevitable limitation.

6 Conclusion
In the computer experiment, our system successfully demon-
strated that BPs can be solved in the concept network orga-
nized with different properties and their combinations, which
has a capability to extend more new/abstractive concepts. Us-
ing RDF-based rules and queries, pruning of the inferred con-
cepts in the search space using regressive inferences was suc-
cessfully implemented. In future work, this model can be ex-
tended for the complete solver for all 100 BPs and new BPs.
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