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Abstract. Data Mining takes many forms and is usually carried out by
algorithms that were specially designed for the task at hand. In this paper
we present the usage of a Non-Axiomatic Reasoning System (NARS) for
Data Mining purposes. NARS is a general-purpose reasoner that enables
reasoning about data while not being restricted to specific Data Mining
problems, allowing for a broad range of applications. This paper evalu-
ates the approach on specific data sets, and contains improvements and
comparisons with other techniques. Additionally, the included LazyMiner
use case demonstrates autonomous NARS-based rule mining under hard
resource constraints on mobile devices.
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1 Introduction

Due to the diverse nature of different Data Mining problems, Data Mining takes
many forms and is usually carried out by algorithms that were specially designed
for the type of problems they are applied on. This involves the usage of specific
data structures, for internal knowledge representation, together with efficient
program flow to effectively extract desired information from the data. Addi-
tionally, algorithm-dependent parameter-tuning, data preparation and feature
selection, to various degree, is usually expected to be done by the user. This is
partly in contrast to recent developments, such as in Deep Learning, where fea-
ture selection and feature engineering, are to a large degree obsolete. Similarly,
as striving for higher level of abstractions in programming improves programs
and readability, achieving a higher level of generality in Data Mining techniques
can make the application of these approaches easier and lead to better results.

In the extreme case of generality lies the grand dream of “Artificial General
Intelligence” (see [1]), systems that learn by their own experience, don’t depend
on labeled data, feature selection or parameter tuning, and which can solve a
large variety of problems in different domains autonomously. However, although
a significant body of research exists in this area, only a few promising proto-
types of such systems exist. One such system, NARS (Non-Axiomatic Reason-
ing System), has reached the necessary level of maturity for a comparison with
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other data mining techniques, and for potential applications. This paper includes
evaluations and comparisons to other data mining techniques, improvements to
NARS, as well as an representative application for rule mining, “LazyMiner”,
under hard resource constraints on mobile devices.

NARS is a general-purpose reasoning system with the ability to learn from
its experience and to work with insufficient knowledge and resources. It does
not depend on labeled data, works in real-time (new input will be accepted at
any time) and is designed to uniformly explain and reproduce many cognitive
functions, including perceiving, planning, reasoning, learning, and so on. The
logic it uses is called NAL (Non-Axiomatic Logic). It is a non-boolean term logic
that allows for conclusions with various degree of certainty. NAL also includes
a formalization of evidence that allows the system to keep track of the collected
evidence that speaks for or against a hypothesis/statement (see [2]). Open-NARS
(see [3]) is the most mature implementation of NARS, which is the version that
is improved and evaluated in this paper.

Since NARS uses a term logic, all input is of this form. This term logic usually
consists of (A→ B) statements which represent an Inheritance relation between
A and B. For instance, that cats are animals can be written as (cat→ animal).
A further relation is Implication. Implication,⇒, is taken as a correlative rather
than causal relation, and can be used to encode a causal relation as a special
case, see [4] for why this is the case. Important to note is that the truth value of
statements is not boolean, rather it is a tuple of the positive evidence w+, and
the negative evidence w−, that votes for/against the statement. Additionally,
the total evidence of a statement is intuitively defined as w := w+ + w−. An
alternative representation we will use from now on is defined as the tuple (f, c)
with frequency f := w+

w and confidence c := w
w+1 . This representation can be

mapped to the former more intuitive representation in a bi-directional manner,
the following picture illustrates this:

Confidence

Frequency

0

1

10.01

Little positive evidence,

no negative evidence

Infinite total evidence

Little contradictory evidence 

0.99

A lot of contradictory evidence 

Much negative evidence,

         no positive evidence

0

Much positive evidence,

no negative evidence

0.5

Little negative evidence,

no positive evidence 

Zero total evidence

Zero total evidence

To form such statements, the system can form compound events such as
sequences of events. In sequences, the relative time information between the
involved events is retained. Additionally, Temporal Induction, an Induction rule,
allows the system to create predictive statements based on two events. The
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induction rule basically states

{A(f1, c1), B(f2, c2)} ` (A 6⇒ B)(f1,
f2 ∗ c1 ∗ c2

f2 ∗ c1 ∗ c2 + 1
)

where event A happened before B. The result can then be revised on each
occurrence by summing up the positive and negative evidence, allowing stronger
and stronger hypotheses to form. Here, in the simplest case, A and B are events,
where usually both are Inheritance statements such as (weather → [rainy]) and
(street → [wet]) (brackets denoting properties, see [2]), but they could also be
sequences.

To decide which premises should be selected for inference, a control mecha-
nism is necessary. In this paper, only the aspects of the NARS control mecha-
nism relevant to Data Mining are described, more details can be found in [3].
NARS’s control mechanism realizes a form of Attentional Control using the Bag
data structure. This is a data structure where the elements are sorted according
to their priority, and the sampling operation chooses candidates with selection
chance proportional to their priority. This makes the control strategy similar to
the Parallel Terraced Scan in [5], as it also allows to explore many possible op-
tions in parallel, with more computation devoted to options which are identified
as being more promising. After the selection, a candidate is returned to the bag,
with a decrease in priority proportional to the durability value. Data items enter
having their priority modulated by their truth value and occurrence time. This
is the case for both, input events and results generated by the inference process.
All combinations of premises happen through sampling from a bag. Both recent
and high truth-value items tend to be used more often, but also query-related
ones. This suffices to allow for simple attentional control, which chooses premises
neither fully randomly nor exhaustively, but biased by the relevance of patterns
and the current time. This is helpful as each inference step is valuable: only a
fixed number of inference steps can happen per time unit, so how to utilize them
matters a lot.

LazyMiner is our representative application for rule mining under hard re-
source constraints using Non-Axiomatic Reasoning. Rule mining plus inference
allows for enhancements of existing applications but also for new possibilities:
learned and inferred knowledge can reduce sensing demands and lower energy
consumption, can give insights about user habits, and can be used to provide
users with contextually relevant information. Such technology can support and
complement a large variety of energy-efficient and context-aware applications. It
opens the door to all sorts of applications that need to extract and work with
relationships between events. However, allowing for efficient rule mining directly
on mobile devices is a challenge. Software such as [6] and [7] circumvent that
problem by letting the rule mining process happen on a server. LazyMiner is
an attempt to get rid of this restriction by incremental rule mining with user-
defined resource usage. LazyMiner makes directly use of OpenNARS, which is
designed to work under the Assumption of Insufficient Knowledge and Resources
(AIKR). Applying this system allows for precise control of how many resources
should be assigned to the rule mining process, making it tractable to be applied
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directly on mobile devices. Here, the rule mining happens through the appli-
cation of temporal inference rules, which allow temporal patterns, from event
streams, to be summarized. In such event streams, the amount of possible event
combinations grows exponentially with the amount of incoming events. Thus, ex-
haustively evaluating all possible combinations is extremely expensive and often
not an option. Instead, the Attentional Control mechanism of NARS is utilized,
which allows it to allocate resources on patterns that seem promising, stable and
useful, while keeping the overall resource usage of the system constant.

2 Related work

General AI systems, which are also capable of extracting knowledge from data,
such as AERA (see [8]) and OpenCog (see [9]) exist.

AERA follows similar principles to NARS, especially in its Resource Allo-
cation strategy that shares strong similarity with the Bag-based mechanism in
NARS. It is also similar to the Parallel Terraced Scan proposed in [5]. Roughly
speaking, all of them allow for the parallel execution of “code items” with
priority-controlled speed. However, AERA’s learning component is not yet fully
implemented.

OpenCog, although also making use of a Term Logic (and others), follows
different principles. Especially it does not treat Resource Allocation for working
with insufficient resources as a fundamental requirement. However, this system
is still under heavy development.

For particular Data Mining tasks the situation is much better, as Data Mining
can be seen as a mature field with working solutions to many specific problems.
One of many examples is the Generalized Sequential Pattern algorithm (GSP)
and extensions thereof (see [10,11]) as a solution to the Sequential Pattern Min-
ing problem. GSP is successfully applied in a variety of applications. Similarly,
the Apriori algorithm, [12] and variations thereof, are applied in various appli-
cations that demand to mine for Association Patterns.

LazyMiner Regarding LazyMiner, there is related work in the literature,
such as MobileMiner and the “Acquisitional Context Engine” (ACE), described
in [7] and [6] respectively. MobileMiner also supports rule mining from data
streams, but also prediction based on the rule mining results. However, their ap-
proach suffers from a key limitation: the rule mining happens in an exhaustive
and non-incremental manner, meaning that the resource usage depends expo-
nentially on the amount of input. To reduce resource usage, they make use of the
”Weighted Mining of Temporal Patterns” (WeMit) idea. This idea consists of
grouping events within a certain chosen time window into the same baskets, and
to represent re-occurring baskets as a single compressed basket. This treatment
reduces the amount of possible basket combinations significantly, for all the cases
where it applies. But even with this idea, their resource requirements grow expo-
nentially in respect to the amount of resulting compressed baskets. In the worst
case of temporally sufficiently far apart and distinct input events, the amount of
resulting baskets is equal to the amount of input events itself. Thus, for certain
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scenarios, the rule mining becomes too expensive to be directly carried out on
mobile devices. On the other hand, LazyMiner, using NARS, mines patterns in-
crementally and attention-driven, while keeping the total resource usage within
a pre-defined constant. In ACE (see [6]), rule mining works in an incremental
manner, and is targeted at energy-efficient context sensing. It also allows for
boolean inference based on the rule mining results. While for this approach it is
less clear whether it could be made efficient enough to run on a smart-phone, its
limitations to only include minConf=99% results for its reasoning, makes it in-
applicable for many cases: it misses rules that most time apply, but not always.
And because of this it also misses potential predictions and inference results,
making it effectively fail in less stable environments. For LazyMiner the situa-
tion is different, because it makes use of Non-Axiomatic Logic (NAL) (see [2])
that allows for conclusions with variable certainty, dependent on the certainty
of the premises.

3 Methodology

Data Mining and Reasoning are often seen as orthogonal to each other: While
Data Mining is all about extracting knowledge from data, Reasoning systems
usually completely lack the ability to learn anything from data. Instead, they
usually derive conclusions which logically follow from the premises. Not so NARS,
which has a notion of certainty and several “structure building” rules. Together
with its general knowledge representation language, this helps it to be applica-
ble to various data mining problems. Additionally, Reasoning Systems usually
have a general knowledge representation language which is not restricted to any
problem domain, allowing NARS to answer different questions about the data.
Also the inference rules as well as the control mechanism are usually completely
domain-independent. This flexibility and domain-independence was also a ma-
jor consideration for designing NARS as an inference engine (see [2]), and a key
motivation for us to apply it to different Data Mining problems.

To evaluate the strength of the system, but also to identify and fix weak-
nesses, the system was compared with other methods, on different data mining
problems. To obtain results of statistical significance, the experiments were re-
peated multiple times, using different data samples. This allowed us to see general
trends and to define success rate measurements. In this process we also identified
weaknesses, and found ways to improve the system.

4 Results

Our results from the comparisons:

1. Time series data: We wanted to get an understanding of how working under
AIKR affects the systems pattern mining capability. Here, a transformation
to Sequential data was carried out, achieved by a Discretization technique,
as also suggested as an option in [10]. To achieve this, all values in the
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used data set [13] were normalized into the range from 0 to 1 and rounded
towards the closest point in {0.1 ∗ k|k ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}} such
that the maximum value in the data set became 1.0 and the minimum value
0.0 and the others in-between. In this way the problem was reduced to the
Sequential pattern mining problem for which an extension of GSP (see [11])
is a solution for. GSP constructs patterns incrementally and makes use of
the Apriori principle to prune the tree. However, if we set a low minSupp
and minConfidence, there are still exponentially many patterns in respect
to the input amount which are above minSupp, so if directly used that way
it behaves like an exhaustive pattern miner. Such an exhaustive GSP-based
miner becomes an upper bound to compare with, as by definition there is
no way for NARS to find a pattern that is not also found by an exhaustive
approach. This way, the amount of patterns found by NARS, compared
with the amount of total possible patterns, gives an indication of overall
capability under the chosen resources. We obtained across 100 runs, using
an input stream of a fixed amount of input events grouped into buckets of
10 (from the [13] data set) per time unit:

The picture suggests that the bucket combinations missed by NARS grow
exponentially in respect to the amount of input events seen so far, meaning
that the system misses most of the options.
The red line can be easily explained, as the amount of processing NARS
can do from one time unit to the next is a constant. So the amount of new
patterns it will derive will, at most, linearly increase over time even though
a constant amount of new events enters the system per time unit.
For the blue curve it is easy to see why it is really growing exponentially:
for a list of events a1, ..., an and a new incoming event an+1, at least the
patterns a1, ..., an and (a1, an+1), ..., (an, an+1) are both possible to extract,
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so there are at least twice as many candidate combinations of events after a
new event is inserted.
Putting these considerations together, with the green function being the red
at most linear function subtracted from the blue exponential one, we indeed
end up with an exponential function.
And how could it have been otherwise? The resource expense, to generate
all options, grows exponentially with each new input event, while NARS
invests the same constant amount of time on each one. Even when more
resources are assigned to NARS, the slope of the red curve will be steeper,
but the result will be the same. However this is not bad considering that
most patterns appear locally in time. This kind of pattern is clearly also
seen by NARS, as priorities of recent events will be higher and thus have a
higher chance to be selected together.

2. Data Stream Mining: While NARS treats the Sequential Pattern Mining
problem as a Data Stream Mining problem by default, GSP can also be
applied together with Reservoir sampling. (see [14]) This makes it possi-
ble to keep the computational cost under control as the reservoir always
holds a certain constant amount of items similar as Bag. Reservoir sampling
however keeps all input events with equal probability, so doesn’t have the
aforementioned Bag-sampling property to prefer temporally local patterns.
This makes it less useful for this purpose, and also unable to deal with con-
cept drift properly. On the other hand it more easily keeps track of the
frequent patterns, which suggested an improvement to Bag-based sampling
to us: increasing the “quality” of an event whenever it occurs, a value that
represents a threshold under which priority can only slowly drop.

LazyMiner Application LazyMiner addresses the issue of high computa-
tional expense in rule mining processes on mobile devices. Having NARS as the
core component allows LazyMiner resources limits to be set using an API call.
This makes it tractable to be used on mobile devices. One goal of the project
is to show that the most useful results are found by the Bag-based Attentional
Control mechanism, even when low resources are provided and a high number
of input events are entered. This is demonstrated by collecting statistics of cases
where frequently re-occurring patterns are found while operating under such con-
ditions. Such cases consist of re-occurring sequences of events, with ‘unrelated’
events potentially in-between. Also reasoning and question answering capabil-
ities are shown based on such examples. Here, the events usually incorporate
data from all sorts of sensory devices. Being able to use sensory input directly
is an additional goal of the LazyMiner application. Several input encoders that
map typical sensory data to statements in Non-Axiomatic Logic (NAL) were
developed for this purpose.

In our experiments, a LG Arist MS210 device was used, with Android 7.0
as operating system. LazyMiner runs with Android 4.4 (using the ART runtime
instead of Dalvik) and newer. OpenNARS is instantiated a single time and is
controlled by LazyMiner. LazyMiner comes with a convenience API and a variety
of encoders that allow for an easy way to input all sorts of sensory events into
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the NARS instance. The encoders automatically map sensory data to the format
the NARS instance accepts.

An issue to address was how to encode sensory values into a format acceptable
to NARS. Here, the simplest way of encoding values into terms turned out to be
discretization. Using this method, a term is assigned to a certain numeric range.
This makes it possible for the system to explicitly reason about the involved
input quantities. The result of such a quantization is usually an event like

<{50} --> heartrate>.

This is the representation1 the default sensory value encoders in LazyMiner use.
Additionally there is a mode for completely preserving the numeric quantities by
modulating the truth value (frequency) of the statement. This idea works when
no terms for intermediate values are necessary. This isn’t the case in general,
although, for example, it makes sense to encode the brightness value of a pixel as
a statement in such a way that, its truth frequency corresponds to its brightness.
This leads to a representation like

<{pixel1} --> [bright]>. %degree%

where degree is the truth frequency of the statement. The distinction between
both methods is related to brightness vs. color vision in human beings, a topic
that is beyond the scope of this report.

To run OpenNARS on mobile devices, OpenNARS was ported to Android
so that it compiled successfully. Porting the Java8 code to the Android platform
only required minor changes to the code.

The API was then refined, to make it possible to feed NAL statements into
the reasoner and to register callback functions for reasoning results. A simpler
user interface, that allows the monitoring of the reasoner was also developed.

Also, a LazyMiner-specific API was added, as application designers do not
want to deal with the details of NARS when applying LazyMiner, this API acts
as an abstraction layer. It encodes a large range of device-specific events and
other custom events in a format NARS accepts, for instance it can deal with
numeric array inputs. Additionally, it allows resource limits to be defined. And
the developed GUI allows for convenient usage and general monitoring of the
reasoner.

Then, the following interactive application in the domain of health care was
developed. It shows different abilities of LazyMiner, such as learning from sensory
data and other events, as well as answering questions about learned knowledge.

Patient example To evaluate the system in a more realistic way, whilst
making our results reproducible, instead of using a fixed data set, we created
a Patient data generator (see [15]) that simulates a typical daily routine of the
patient. It involves the simulation of the patient’s heart rate in regard to different
activities as well as some random fluctuations. The heart rate sensor constantly
inputs numeric events such as

1 As the notation suggests, it is the ASCII version of ({50} → heartrate)
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<{60} --> heartrate>.

into the system, where the value was originally between 0 and 100 and was
rounded to the next 10 for discretization. Additionally, location information and
activity information, such as whether the person is running, sleeping or walking,
is provided to LazyMiner. Location information is encoded as an

<(*,{SELF},location) --> at>.

event, and activities are encoded by operations like

<(*,{SELF}) --> ^run>.

Using these events, the system can be queried as to answer why the heart
rate sometimes suddenly raises to a frequency of 110. In the simulation, this
value is only reached after the patient is eating at home, potentially because
something poisonous was eaten.

LazyMiner, using NARS, showed competence in finding “eating at home”
as an explanation of the increased heart-rate: after simulating 7 complete day
cycles using the data generator, for 100 times, the explanation was found in 93
of the cases, which also means 93 percent of overall success rate.

5 Discussion

NARS enables general data mining with constant computational resources, and
our findings suggest how such a system can be further improved. Specifically, a
Long-term importance value, increased by pattern frequency, can lead to frequent
pattern mining improvements for Bag-based methods. As we have shown, NARS
is not the ideal choice when all possibilities can be evaluated exhaustively, in this
case an approach like GSP is usually better. But it presents another technique
for data stream mining, where exhaustive data mining is usually infeasible. Here
it has the benefit to extract local patterns more easily over the approach that
combines Reservoir Sampling with GSP. This allows it to deal with concept drift
more effectively, which is especially important for autonomous systems.

With our LazyMiner application, we have also shown that the system allows
for energy-efficient open-ended rule mining on mobile devices, and can support
context-aware applications that can benefit from its usage. Furthermore, our
example in the health care domain shows that the system is capable of finding
answers to relevant queries, such as to find reasonable explanations for events of
interest. We also expect similar capabilities also in different domains, whenever
extracting knowledge from event streams is important.

Whilst the project goals are met, applying Non-Axiomatic Reasoning systems
to such tasks will be further explored in the future. Also further comparisons
with other methods will be necessary, to obtain a more complete picture of
the system’s data mining capabilities. The code of the project will be publicly
available on Github, see [16].
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