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Abstract
Randomised and controlled experimentation is not
always possible when evaluating AI agents over
performance tests. Intelligence or performance
testing environments are usually designed and/or
modified to the specifications of the evaluated
agents. In this paper, we discuss the use of the
propensity score matching statistical technique for
eliminating or reducing bias when analysing and
comparing agent performance-scores across differ-
ent environmental (test) settings. We show how,
once matching has been achieved, the contrast in
performance scores between two evaluated agents
can vary significantly. Therefore, matching on
propensity scores can enable a fair comparative as-
sessment of performance between agents that can-
not be evaluated over identical environments and
experimental settings.

1 Introduction and Motivation
The evaluation of artificial intelligence has become very
popular in the last decade with new environments designed
for assessing various sorts of AI [Chmait, 2017; Chmait
et al., 2017; Hernández-Orallo et al., 2016; Hernández-
Orallo, 2017; Chmait et al., 2016a; Chmait et al., 2016b;
Chmait, 2016; Insa-Cabrera et al., 2012]. In fact, the evalua-
tion of general-purpose AI has claimed its own success with
state-of-art models and evaluation techniques targeting the
measurement of general intelligence in machines presented
year after year [Hernández-Orallo et al., 2017]. Neverthe-
less, many barriers are yet to be overcome in this field of re-
search. For instance, although agents are being designed to
solve more general problems in AI, (universal) intelligence
tests that can be administered to different sorts of artificial
agents, under identical experimental settings, are still far-off
from being attained. Even when evaluating model-free re-
inforcement learning agents, test environments need to be
tuned appropriately. Moreover, at the time being, there is no
feasible way to accurately measure complexity [Hernández-
Orallo, 2015] across different types of assessment tasks in or-
der to make sure that agents are evaluated over tasks of similar
complexities/difficulties. Consequently, in many scenarios,
artificial agents are still evaluated over different environments

and performance tasks, and under different environmental or
test settings, which inhibits our ability to precisely compare
and contrast their performances to one another.

The motivation behind this work stems from the latter
problem. To that end, with AI agents evaluated across a range
of different environments that are usually tuned to the pa-
rameters and specifications of these agents, how can we pre-
cisely compare the performances of such agents in an unbi-
ased way? We propose the use of Propensity Score Matching
(PSM) for reducing assignment-bias when allocating agents
to performance-evaluation tasks and canonical test problems.
As a result, the comparative assessment of performance be-
tween agents that cannot always be evaluated over identical
settings is made feasible.

This paper is organised as follows. The next section gives
an overview of the PSM statistical technique. We then discuss
how to apply PSM to balance the factors/covariates affecting
the measurement of performance between two agents eval-
uated over a series of tasks. Finally, we give an illustrative
example of how such bias can be reduced (or, in the best case
scenario, eliminated) by comparing covariate balance before
and after the application of PSM to sample test scores.

2 Propensity Score Matching
Rosenbaum and Rubin have first introduced the concept of
PSM in 1983 [Rosenbaum and Rubin, 1983]. The over-
all idea behind PSM is straightforward. In statistical terms,
with the absence of randomised controlled trials, the as-
signment of treatments to subjects is usually non-random.
Therefore, subjects receiving or excluded from treatment
will not only differ in their treatment condition, but also
in other properties or characteristics [Heinrich et al., 2010;
Thavaneswaran, 2008]. To eliminate selection bias, the PSM
technique matches treated and untreated observations on the
estimated probability of being treated which is calculated as
their propensity score. More technically, the propensity score
[d’Agostino, 1998] for subject i s.t. (i = 1, 2, . . . , N) is the
conditional probability of being assigned to a particular treat-
ment Zi = 1 versus a control Zi = 0 given a list of some
observed attributes xi (called covariates or pre-treatment vari-
ables) where:

ps(xi)
def
= pr(Zi = 1|Xi = xi) ∈ {0, 1}



Usually, ps is estimated via discriminant analysis or using a
logistic regression. It is assumed that the Zis are independent
given the X’s as follows:

pr(Z1 = z1, . . . ZN = zN |X1 = x1, . . . , XN = xN ) =∏N
i=1 ps(xi)

zi(1− ps(xi))
1−zi

PSM ensures balanced covariates (corresponding to the Xs),
where a balancing score, balance(X) is a “function of the
observed covariates X s.t. the conditional distribution of
X given balance(X) is the same for the treated (Z = 1)
and control (Z = 0) units” [Rosenbaum and Rubin, 1983].
Therefore, matching or regression (covariance) adjustment on
ps produces unbiased estimates of the treatment effects, when
the treatment assignment is un-confounded [Rosenbaum and
Rubin, 1983; d’Agostino, 1998]. The un-confounding prop-
erty (of the treatment assignment) is satisfied if: Z, the treat-
ment assignment, and Y , the response or potential outcome
of the experiment, are known to be conditionally independent
given the covariates, X (for example if Y0, Y1 ⊥⊥ Z|X where
Y0 and Y1 are respectively the potential outcomes under con-
trol and treatment).

In summary, PSM can allow us to estimate the causal ef-
fect of a treatment by eliminating assignment bias of treat-
ments to subjects.1 This is achieved by making sure that
subjects in treatment and control groups that have equal (or
similar) propensity scores have similar distributions on their
pre-treatment variables (background covariates).

3 A Demonstration Using a Hypothetical
Example

We present a hypothetical scenario in which two agents A
and B are evaluated over a series of tasks from an intelli-
gence/performance test. For our purposes, we assume that the
scores from these experiments reflect the ability of the testee
in solving the tasks, but do not factor in other important pa-
rameters that can have an impact on the performance of the
evaluated agents. Examples of such confounding parameters
are the following:

1. the number of test iterations before an agent returns an
answer to the test,

2. the processing time per iteration,
3. the agent’s memory requirements,
4. the number of bits received from the environment as

an observation (in the context of an agent-environment
framework [Hutter, 2004]).

An artificial dataset of was created2 corresponding to a table
of five columns holding a list of scores for agents A and B

1There are many ways in which matching can be performed such
as, by using exact matching (treated and control unit have exactly
identical values on each covariate), sub-classification (similar distri-
butions of covariates in each subclass), nearest-neighbour (distance
measure using as a logit) and other techniques. Besides matching,
there are ways one can use propensity scores for balancing covari-
ates using (e.g., the inverse probability) weighting.

2The artificial dataset was uploaded in csv format to GitHub to
allow for the replication of experiments.

(where the score is a real number ∈ {0, 100}) over a set of
hypothetical experiments (rows), as well as each experiment’s
(confounding) parameters 1 to 4 previously identified in the
enumerated list.

The results from these experiments are analysed using Or-
dinary Least Squares (OLS) regression (Table 1) to compare
the scores of agents A and B. The performance estimate for
agent B appears to be (−6.621 units) lower compared to the
default treatment class, agent A.

Table 1: OLS regression results showing the performance score esti-
mates of agents A (the reference agent) and B using the raw artificial
dataset.

Score estimates Std. Error Pr(> |t|)
(Intercept) 90.520 4.058 < 2e− 16
Agent B -6.621 7.444 0.374

Since it was assumed that the tests scores do not account
for confounding parameters that could have influenced the
agents’ performances, the OLS estimates in Table 1 can be
biased.

In order to guarantee an unbiased comparative analysis
of performances, we can balance the experiments on all the
characteristics (the covariates or pre-treatment variables that
could be confounding) that could influence the outcome (the
scores) from these experiments. Therefore, we encode the
confounding parameters 1 to 4 as covariates in a PSM model.
In other words, we balance (the propensity scores of) agents
A and B according to the values of the 4 confounding covari-
ates.3 In the context of PSM, agents A and B in this example
would correspond to the treatment and control units respec-
tively.

The propensity score distribution from the PSM is shown
in Figure 1. The circles in Figure 1 represent the propen-
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Figure 1: Propensity score distribution.

sity scores from each experiment. We observe a close match
between the treatment units and control units (no unmatched

3The matching was performed using the R “MatchIt” package
[Ho et al., 2007] with the nearest neighbour matching method.

https://github.com/nader-chmait/PSM/blob/master/testScores.txt


treatments). The unmatched control units are discarded from
the comparison (as they correspond to biased observations).

It is important to note that discarding test results (unbal-
anced experiments) would return less accurate estimates of
the overall performance of the agents since their scores are
extracted from a narrower set of tests. Nevertheless, the con-
trast in performances between the evaluated agents over the
balanced tests is feasible and accurate. Of course, the overall
performance of the agents can always be extracted as their av-
erage scores over the complete set of experiments. However,
as described before, contrasting the agents’ performances us-
ing the average scores is arguably unfair since each agent was
operating under different environmental/test settings, and had
distinct assessment requirements. We note in passing that
there are (propensity score weighting) techniques available to
reduce the number of discarded/unmatched units which might
result from performing an exact (e.g., one-to-one) matching
on propensity scores.

The balance before and after matching is illustrated in Fig-
ure 2. The histograms clearly differ before matching (Figure
2, left) but turn out to be identical after matching (Figure 2,
right). This indicates that matching was successful.
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Figure 2: Histograms of the propensity scores before and after
matching.

After matching was successfully completed, we repeated
the OLS regression contrasting the score estimates of agents
A and B using the matched/balanced dataset of test scores.

Table 2: OLS regression results showing the performance score es-
timates of agents A (the reference agent) and B using the balanced
data after applying PSM.

Score estimates Std. Error Pr(> |t|)
(Intercept) 72.781 6.085 < 2e− 16

Agent B 11.118 8.606 0.197

Results from the second OLS regression are listed in Ta-
ble 2. These results show that, after matching, the perfor-
mance estimate for agent B appears to be (11.11 units) higher
compared to the default treatment class, agent A.

This is significantly different from our previous conclu-
sions as, after bias (due to confounding covariates) has been
eliminated, B clearly outperforms A. The same results can
also be drawn from a two sample t-test performed on the score
vectors of agents A and B using the balanced dataset. Given
that PSM has eliminated bias from our experiments, the dif-
ference in performance estimate from the OLS regression on
the balanced data can be interpreted as the causal effect of in-
troducing agent B as a test subject as opposed to (the control
unit) A being the testee.

It is noteworthy to mention that, even if we control for the
confounding covariates in the OLS regression (by introduc-
ing them as dummy variables), the contrast in performance
between the two evaluated agents would still be remarkable
after matching.

One limitation of this study is that we make the assump-
tion that the test scoring methodology does not capture all the
characteristics that can have an impact on the performance (or
score) of the evaluated agent. While this is the case for many
testing environments, there are others which penalise agents
according to time, memory requirements, etc. Therefore, in
such case, analysis of performance before and after matching
should be identical and a PSM is not required.

Finally, we point out that the use of the PSM technique
can be extended to multi-agent scenarios in which the focus
becomes on understanding the (change in) group performance
after the introduction of a new agent (the treatment) into a
group of co-operative or competing agents.

4 Conclusion

The motivation behind this paper was to demonstrate the po-
tential advantage of using the propensity score matching (or
weighting) statistical technique to reduce bias when analysing
and comparing performance test scores between artificial
agents. Bias can arise as a result of various parameters, re-
ferred to as covariates, that might directly or indirectly im-
pact the score of an agent over a performance task. Such pa-
rameters are not always factored-in as part of the test scoring
methodology. The matching by propensity scores balances
the observations according the values of the covariates. Un-
matched or biased units are discarded from the analysis. As a
result, the PSM is shown to return more accurate or realistic
interpretation of the difference in performance between two
or more evaluated agents.

While this paper discusses the potential advantage of using
PSM for comparing artificial agent performances, we believe
that PSM could even prove to be useful for comparing per-
formance between human and AI agents [Insa-Cabrera et al.,
2011]. In such experimentation, it is extremely difficult to
implement identical test settings that apply to both humans
and artificial agents over a range environments and tasks. For
instance, factors like speed and memory tend to be vastly dif-
ferent. It is possible that PSM can help alleviate this problem
by reducing experimental bias, opening new doors for com-
paring humans to artificial systems.
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