
Rule-based Reinforcement Learning augmented by External Knowledge

Nicolas Bougie12, Ryutaro Ichise1
1 National Institute of Informatics

2 The Graduate University for Advanced Studies Sokendai
nicolas-bougie@nii.ac.jp, ichise@nii.ac.jp

Abstract

Reinforcement learning has achieved several suc-
cesses in sequential decision problems. However,
these methods require a large number of training
iterations in complex environments. A standard
paradigm to tackle this challenge is to extend rein-
forcement learning to handle function approxima-
tion with deep learning. Lack of interpretability
and impossibility to introduce background knowl-
edge limits their usability in many safety-critical
real-world scenarios. In this paper, we study how
to combine reinforcement learning and external
knowledge. We derive a rule-based variant ver-
sion of the Sarsa(λ) algorithm, which we call Sarsa-
rb(λ), that augments data with complex knowledge
and exploits similarities among states. We apply
our method to a trading task from the Stock Mar-
ket Environment. We show that the resulting al-
gorithm leads to much better performance but also
improves training speed compared to the Deep Q-
learning (DQN) algorithm and the Deep Determin-
istic Policy Gradients (DDPG) algorithm.

1 Introduction
Over last few years, reinforcement learning (RL) has made
significant progress to learn good policies in many domains.
Well-known temporal difference (TD) methods such as Sarsa
[Sutton, 1996] or Q-learning [Watkins and Dayan, 1992]
learn to predict the best action to take by step-wise interac-
tions with the environment. In particular, Q-learning has been
shown to be effective in solving the traveling salesman prob-
lem [Gambardella and Dorigo, 1995] or learning to drive a
bicycle [Randløv and Alstrøm, 1998]. However large or con-
tinuous state spaces limit their application to simple environ-
ments.

Recently, combining advances in deep learning and rein-
forcement learning has proved to be very successful in mas-
tering complex tasks. A significant example is the combina-
tion of neural networks and Q-learning, resulting in “Deep
Q-Learning” (DQN) [Mnih et al., 2013], able to achieve hu-
man performance on many tasks including Atari video games
[Bellemare et al., 2013].

Learning from scratch and lack of interpretability impose
some problems on deep reinforcement learning methods.
Randomly initializing the weights of a neural network is in-
efficient. Furthermore, this is likely intractable to train the
model in many domains due to a large amount of required
data. Additionally, most RL algorithms cannot introduce ex-
ternal knowledge limiting their performance. Moreover, the
impossibility to explain and understand the reason for a de-
cision restricts their use to non-safety critical domains, ex-
cluding for example medicine or law. An approach to tackle
these problems is to combine simple reinforcement learning
techniques and external knowledge.

A powerful recent idea to address the problem of computa-
tional expenses is to modularize the model into an ensemble
of experts [Lample and Chaplot, 2017], [Bougie and Ichise,
2017]. The task is divided into a sequence of stages and for
each one, a policy is learned. Since each expert focuses on
learning a stage of the task, the reduction of the actions to
consider leads to a shorter learning period. Although this ap-
proach is conceptually simple, it does not handle very com-
plicated environments and environments with a large set of
actions.

Another technique is called Hierarchical Learning [Tessler
et al., 2017], [Barto and Mahadevan, 2003] and is used to
solve complex tasks, such as “simulating human brain” [Lake
et al., 2016]. It is inspired by human learning which uses pre-
vious experiences to face new situations. Instead of learning
directly the entire task, different sub-tasks are learned by the
agent. By reusing knowledge acquired from the previous sub-
tasks, the learning is faster and easier. Some limitations are
the necessity to re-train the model which is time-consuming
and problems related to the catastrophic forgetting of knowl-
edge on previous tasks. All the previously cited approaches
suffer from lack of interpretation reducing their usage in crit-
ical applications such as autonomous driving.

An approach, Symbolic Reinforcement Learning [Garnelo
et al., 2016], [d’Avila Garcez et al., 2018] combines a system
that learns an abstracted representation of the environment
and high-order reasoning. However this has several limita-
tions, it cannot support ongoing adaptation to a new environ-
ment and cannot handle external sources of prior knowledge.

This paper demonstrates that a simple reinforcement learn-
ing agent can overcome these challenges to learn control poli-
cies. Our model is trained with a variant of the Sarsa(λ)

algorithm [Singh and Sutton, 1996]. We introduce external
knowledge by representing the states as rules. Rules trans-
form the raw data into a compressed and high-level represen-
tation. To deal with the problem of training speed and highly
fluctuating environments [Dundar et al.,], we use a sub-states
mechanism. Sub-states allow a more frequent update of the
Q-values thereby smooth and speed-up the learning. Further-
more, we adapted eligibility traces which turned out to be
critical in guiding the algorithm to solve tasks.

In order to evaluate our method, we constructed a variety
of trading environment simulations based on real stock mar-
ket data. Our rule-based approach, Sarsa-rb(λ), can learn to
trade in a small number of iterations. In many cases, we
are able to outperform the well-known Deep Q-learning al-
gorithm in term of quality of policy and training time. Sarsa-
rb(λ) also exhibits higher performance than DDPG [Lillicrap
et al., 2015] after converging.

The paper is organized as follows. Section 2 gives an
overview of reinforcement learning. Section 3 describes the
main contributions of the paper. Section 4 presents the exper-
iments and the results. Section 5 presents the main conclu-
sions drawn from the work.

2 Reinforcement Learning
Reinforcement learning consists of an agent learning a pol-
icy π by interacting with an environment. At each time-step
the agent receives an observation st and chooses an action at.
The agent gets a feedback from the environment called a re-
ward rt. Given this reward and the observation, the agent can
update its policy to improve the future rewards.
Given a discount factor γ, the future discounted reward,
called return Rt, is defined as follows :

Rt =

T∑
t′=t

γt
′−trt′ (1)

where T is the time-step at which the epoch terminates.
The goal of reinforcement learning is to learn to select the
action with the maximum return Rt achievable for a given
observation [Sutton and Barto, 1998]. From Equation (1),
we can define the action value Qπ(s, a) at a time t as the
expected reward for selecting an action a for a given state st
and following a policy π.

Qπ(s, a) = E [Rt | st = s, a] (2)

The optimal policy is defined as selecting the action with the
optimal Q-value, the highest expected return, followed by an
optimal sequence of actions. This obeys the Bellman opti-
mality equation:

Q∗(s, a) = E
[
r + γmax

a′
Q∗(s

′
, a
′
) | s, a

]
(3)

In temporal difference (TD) learning methods such as Q-
learning or Sarsa, the Q-values are updated after each time-
step instead of updating the values after each epoch, as hap-
pens in Monte Carlo learning.

2.1 Q-learning algorithm
Q-learning [Watkins and Dayan, 1992] is a common tech-
nique to approximate π ≈ π∗. The estimation of the action
value function is iteratively performed by updating Q(s, a).
This algorithm is considered as an off-policy method since
the update rule is unrelated to the policy that is learned, as
follows:

Q(st, at)← Q(st, at)+

α [rt+1 + γ ∗maxaQ(st+1, a)−Q(st, at)] (4)

The choice of the action follows a policy derived from Q.
The most common policy called ε-greedy policy trade-off the
exploration/exploitation dilemma. In case of exploration, a
random action is sampled whereas exploitation selects the ac-
tion with the highest estimated return. In order to converge to
a stable policy, the probability of exploitation must increase
over time. An obvious approach to adapting Q-learning to
continuous domains is to discretize the state spaces, leading
to an explosion of the number of Q-values. Therefore, a good
estimation of the Q-values in this context is often intractable.

2.2 Sarsa algorithm
Sarsa is a temporal differentiation (TD) control method. The
key difference between Q-learning and Sarsa is that Sarsa in
an on-policy method. It implies that the Q-values are learned
based on the action performed by the current policy instead
of a greedy policy. The update rule becomes :

Q(st, at)← Q(st, at)+α[rt+1+γQ(st+1, at+1)−Q(st, at)]
(5)

Algorithm 1 Sarsa: Learn function Q : X ×A → R
procedure SARSA(X , A, R, T , α, γ)

Initialize Q : X ×A → R uniformly
while Q is not converged do

Start in state s ∈ X
Choose a from s using policy derived from Q (e.g.,

ε-greedy)
while s is not terminal do

Take action a, observe r, s
′

Choose a′ from s′ using policy derived from Q
(e.g., ε-greedy)

Q(s, a) ← Q(s, a) + α · (r + γ · Q(s′, a′) −
Q(s, a))

s← s′

a← a′
return Q

Sarsa converges with probability 1 to an optimal policy
as long as all the action-value states are visited an infinite
number of times. Unfortunately, it is not possible to straight-
forwardly apply Sarsa learning to continuous or large state
spaces. Such large spaces are difficult to explore since it
requires a frequent visit of each state to accurately estimate
their values, resulting in an inefficient estimation of the Q-
values.

2.3 Eligibility trace
Since it takes time to back-propagate the rewards to the previ-
ous Q-values, the above model suffers from slow training in
sparse reward environments. Eligibility traces is a mechanism
to handle the problem of delayed rewards. Many temporal-
difference (TD) methods including Sarsa or Q-learning can
use eligibility traces. In popular Sarsa(λ) or Q-learning(λ),
λ refers to eligibility traces or n-steps returns. In case of
Sarsa(λ), this leads to the following update rule:

Qt+1(s, a) = Qt(s, a)

+α [rt+1 + γQt(st+1, at+1)−Qt(st, at)] et(s, a) for all s,a
(6)

where

et(s, a) =

{
λet−1(s, a) + 1, if s = st and a = at
λet−1(s, a) otherwise

(7)

The temporal difference error for a state is estimated in a
bootstrapping process. Instead of looking only at the cur-
rent reward, in Monte Carlo methods the prediction is made
based on the successive states. The TD(λ) method is simi-
lar, the current temporal difference error is used to update all
the visited states of the corresponding episode. At each step,
the reward is back-propagated to the prior states according to
their frequency of visit. The parameter λ ∈ [0..1] controls the
trade-off between one-step TD methods (TD(0)) and full-step
methods (Monte Carlo).

3 Rule-based Sarsa(λ)
We first present the general idea of our algorithm, Sarsa-rb, a
variant of the Sarsa algorithm.

We propose a simple method, Sarsa-rb, to enable Sarsa in
continuous spaces boosted by injecting external knowledge.
The idea behind Sarsa-rb is to enhance states representation
and Q-values initialization with background knowledge to
make training more efficient and interpretable. As in Sarsa,
Sarsa-rb estimates the Q-values. However, each state is rep-
resented by a rule. There are various advantages of represent-
ing the states by rules. This makes possible combining re-
inforcement learning and complex knowledge. Furthermore,
the number of Q-values is reduced, which makes the training
much faster.

While Sarsa-rb provides some advantages over Sarsa in
term of quality of policy, we can significantly improve their
training time with a sub-states mechanism. Instead of up-
dating one Q-value at each iteration, our model updates sev-
eral Q-values which share similar information with the cur-
rent state, leading to a significant speed-up. Finally, we adapt
the eligibility trace λ technique to take advantage of the sub-
states, Sarsa-rb(λ).

3.1 Rule-based Sarsa (Sarsa-rb)
The Sarsa algorithm maintains a parametrized Q-function
which maps the states S to their Q-values. Instead of us-
ing as states the state space or a discretization of it, we en-
hance states representation by mapping rules and actions to
Q-values. Depicted in Figure 1, states are replaced by a set of

Figure 1: An illustration of the update of the Q-function. The Q-
values of the states s2 and its sub-states are updated. The sub-states
sharing similar information with s2, in blue, are also modified.

rules, R. The rules associate a pattern to an action and allow
to introduce complex background knowledge.

A pattern is a conjunction of variables which can be arbi-
trarily complex. The variables represent significant events in
the task. For example, in a task involving driving a car, a vari-
able could be (speed between 20 and 50 km/h) and an example
of pattern is ((speed between 20 and 50 km/h) ∧ (pedestrian
crossing the road)). Finally, a rule recommends an action (e.g
brake) for a pattern.

Given an observation obst, the active state is the state for
which its associated pattern is satisfied, in other words, all its
variables are active. Since no pattern is always satisfied, we
added an “empty” state. In other words, this is the default
state, active regardless of the input.

Our contribution here is to provide modifications to Sarsa
which allow to improve states representation with back-
ground knowledge. The rules are a way to abstract the states
from the environment and to deal with continuous or com-
plex data representation. In addition, by taking advantage of
the rules during the Q-values initialization the initial policy
benefits from background knowledge. Moreover, in many do-
mains |R| << |S| resulting in a reduction of the number of
Q-values to estimate. We filter out irrelevant rules by keeping
only the most frequent ones.

In Sarsa, the Q-values are uniformly initialized. In a state
s represented by a pattern p, p controls the activation of the
state and we use the rule to improve the initialization of the
Q-values:

Q(st=0, at=0) =

{
N (µ, σ2), if ruleaction = a

0 otherwise
(8)

with µ the mean and σ2 the variance. The Q-value with the
action recommended by the rule follows a normal distribution
centered around µ and the other Q-values are initialized to 0.

3.2 Prior Knowledge for Rule Generation

To create the rules, we compared two methods. One consists
of manually creating them according to our knowledge about
the task. Automatic extraction retrieves patterns from exter-
nal sources of data.

External Knowledge Based Rules
An intuitive approach to create the rules relies on human or
background knowledge about domains. For example, if the
task involves driving a car, background knowledge can be ex-
tracted from highway rules. The action associated with a pat-
tern can be let empty if it cannot be predicted without much
affecting the quality of the agent.

For example, we can use our expertise about time-series
and stock markets. To deal with that, the rules can be based on
candlestick patterns [Nison, 2001]. This stock-market tech-
nique estimates the trend of the share price by identifying pat-
terns into the time series. Candlestick pattern analysis relies
on patterns composed by the open, high, close and low prices
of the previous observations.

Automatically Learned Rules
In real-world environments, the rules can be automatically
captured by supervised machine learning methods. We follow
a similar idea of [Mashayekhi and Gras, 2015]. The method
extracts the rules from a random forest [Pal, 2005], an en-
semble of decision trees [Safavian and Landgrebe, 1991]. A
decision tree consists of several nodes that branch to two sub-
trees based on a threshold value on a variable. We call leaf
nodes the terminal nodes. A single decision tree has a very
limited generalization capability and a high variance. Several
ensemble models such as random forest reduce the variance
by building many trees and predicting based on a consensus
among decision trees. A simple tree traversal method can di-
rectly extract rules from the trees [Louppe, 2014].

3.3 Sub-states
In TD methods without eligibility traces, one Q-value of the
current state st is updated at each iteration. Instead, we pro-
pose a technique to update the states which share similar in-
formation with st. We augment each Q-value with an ensem-
ble of sub-states, subs. Since each state is represented by a
pattern, we define the sub-states as its sub-patterns, the com-
binations of the variables. To avoid a too large number of
sub-states, we limit the size of the sub-rules to conjunctions
of at least 3 variables. The goal is to get most of the benefits
of the shared information among the states while keeping the
rest of the Sarsa algorithm intact and efficient. We provide
modifications to Q-value estimation and update inspired by
Sarsa which allow to use sub-states.

The estimation of a Q-value Q
′
(s, a) in Sarsa-rb takes into

account the Q-value itself and the value of the sub-states :

Q
′
(s, a) = Q(s, a) +

∑
s′∈subs

Q(s
′
, a) (9)

with subs the sub-states of a state s.
Figure 2 shows an example of a Q-value estimation.

Q(s
′
, a) refers to the estimation of the value of the sub-state

s
′

given the action a. Adding this term grounds the values
of the unvisited states, and makes the value induced by the
values of the similar visited states. Note that we limit the
weight of the term Q(s

′
, a) in the Q

′
(s, a) estimation such as

Q(s
′
, a) << Q(s, a) to ensure convergence towards an op-

timal policy. We achieved this mechanism during the update
step.

Figure 2: Estimation of a Q-value,Q(s, a)
′
, with the sub-states tech-

nique. In addition to the Q-valueQ(s, a) itself, the sub-states values
Q(s

′
, a) are taken into account.

The update process propagates the reward to all similar
sub-states, leading to a more frequent and early update of the
states. Our approach to this problem is to increment the eli-
gibility traces of the similar sub-states.

3.4 Eligibility Trace

Directly implementing Sarsa-rb proved to be slow to learn
in environments with sparse rewards. Our method, Sarsa-
rb(λ), is derived from Sarsa(λ). Adding n-steps returns helps
to propagate the current reward rt to the earlier states. We
allow a propagation of rt to the earlier sub-states by chang-
ing their eligibility traces. The idea behind is that a sub-state
similar to the current state is likely to get a similar reward by
following the same action. The update of the current state s
remains unchanged from Sarsa(λ) :
E(s, a) = E(s, a) + 1

E(y, a) = E(y, a) + e−sim(y,s), if y is a sub-states of s

E(y, a) = E(y, a) + e−sim(y,s)2

K , otherwise
(10)

E(s) denotes the eligibility trace of the state s and E(y) the
eligibility trace of the sub-state y. We refer to sim(y, s) as
the similarity between the sub-state y and the state s. We
compute the similarity score as the number of different vari-
ables between a sub-state y and a state s, sim(y, s) = |y∩s|.
We bounded the score between 0 (identical) and 1. Note that
we only take into account the sub-states sharing at least two
variables.

Since sub-states are often updated, we avoid exploding el-
igibility trace values by adding an exponential decay and a
constantK. This constant should be positive and greater than
zero. A high value leads to a small increase of the eligibil-
ity traces of the sub-states sharing only a few similar sub-
patterns. Updates performed in this manner allow to estimate
more accurately Q-values. Experiments also indicate that this
method decreases the number of necessary visits and yield
faster convergent policies.

4 Experiments
We evaluated Sarsa-rb(λ) on the OpenAI trading environ-
ment, a complex and fluctuating simulation from real stock
market data. The agent observes the last stock price described

(a) An example of OHLC chart (open, high,
low, close)

(b) Stru-
cure of one
observation

Figure 3: Example of a sample of data from the environment. The
left plot shows the time series and the right plot is the structure of
one data point, one observation from the environment

by the open price, the close price, and the highest/lowest price
during the one minute interval (Figure 3(b)). We limit the
possible actions to Buy, Hold and Sell. The reward is com-
puted according to the win/lose after buying or selling. We
consider that a single agent has a limited impact on the stock
market price, for this reason, the price is not influenced by
the actions of the agent. Each training episode is followed by
a testing episode to evaluate the average reward of the agent
on another subset of the same stock price. Each episode was
played until the training data are consumed, approximatively
105 iterations.

Our system learns to trade on a minutely stock index. In
total, we used 4 datasets with a duration varying between 2
years and 5 years. We trained the model on one stock index
and we used the other datasets to generate the rules. Among
the training examples, 80% are randomly selected for training
the model and the remaining for testing it. We performed a
grid-search to find the optimal parameters to initialize the Q-
values and found that µ the mean equals to 0.25 and σ equals
to 0.2 were the best parameters. We use K = 100 as decay
factor of eligibility traces. In case of manually created rules,
we first compute the percentage increase in the share price 14
days later and then estimate an optimal action associated with
each pattern. In total, we took into account 40 candlestick
patterns. The patterns mined were filtered with C = 5, the
minimum number of times a pattern occurs in the training
data.

We follow a simplified technique used by [Mashayekhi and
Gras, 2015] to generate rules from a random forest. Briefly,
we extract the rules top to bottom (root to leaf) and filter the
rules to avoid redundancy. In practice, we annotate 6000 sam-
ples into 3 classes. Each sample is the aggregation of the
last 5 prices. We labeled the dataset according to the price
pdiff increase 14 days later (pdiff >=0.5%, pdiff <=-
0.5%, 0.5%< pdiff >-0.5%) to train a random forest. We
compute pdiff as the average between the open and close

Table 1: The table compares performance in term of frequency of
visit of the states. We compared Sarsa-rb with and without sub-
states.

Settings No sub-states Sub-states

Average number of updates 376.789 5873.17
Average duration between
two consecutive updates 11715.51 2189.31

price. In order to limit the number of rules and since the
impact on accuracy was minimal, we built 20 trees with a
maximum height of 4. In total, we retrieved 855 rules.

We analyze the impact of the sub-states technique on the
agent. Furthermore, we evaluate Sarsa-rb(λ) and compare the
improvement with DQN and DDPG in terms of training speed
and in terms of quality of policy.

4.1 Sub-states

(a) Sarsa-rb(λ) without sub-
states

(b) Sarsa-rb(λ) with sub-states

Figure 4: Comparison of the average number of Q-values visited at
least one time over 3 runs.

In order to better understand the impact of the sub-states
on the learning, we analyze and compare Sarsa-rb(λ) with
and without sub-states. We also investigate properties of the
sub-states of the manually created rules.

Table 1 reports the number of times the Q-values are up-
dated on average. We run the experiments 10 times for
500 episodes with the same hyper-parameters. The first row
shows the average number of times states are updated and
the second row shows the average number of steps between
two consecutive updates of states. The states are updated
+1500% with the sub-states technique and also the time be-
tween two updates is decreased. We observed that a frequent
update of the sub-states leads to a faster convergence of the
Q-values.

Figure 4 shows the number of states and its sub-states are
updated at least once over time. At each iteration, we count
the number of states or states with a sub-state visited. On av-
erage, states are updated for the first time much earlier when
the sub-states technique is used. Sub-states play an important
role for early updates and in the update frequency. Updating
frequently the sub-states of a state improves the accuracy of
estimation of its Q-values, which can significantly decrease
learning time, especially when the number of states is large.

4.2 Overall Performance
We compared Sarsa-rb(λ) trained with the sub-states mecha-
nism to a deep recurrent Q-learning model [Hausknecht and
Stone, 2015] and a DDPG [Lillicrap et al., 2015] model. For
this evaluation, we individually tuned the hyper-parameters
of each model. We decreased the learning rate from α = 0.3
to α = 0.0001, the eligibility trace from λ = 0.9 to λ = 0.995,
and then used ε = 0.01, λ = 0.9405 and K = 100 and we
tuned the neural network architectures of DQN and DDPG.
The results are obtained by running the algorithms with the
same environment hyper-parameters. The plots are averaged
over 5 runs. Finally, we used the manually created rules as
the states of Sarsa-rb(λ).

We report learning curve on the testing dataset in Figure
5. Sarsa-rb(λ) always achieve a score higher than DQN and
DDPG. As shown in Figure 5, Sarsa-rb(λ) clearly improves
over DQN, we obtained an average reward after converging
around 3.3 times higher. DDPG appears less fluctuating than
Sarsa-rb(λ) but also less effective.

Figure 5: Performance curves for a selection of algorithms: original
Deep Q-learning algorithm (red), Deep Deterministic Policy Gradi-
ents algorithm (green) and Sarsa-rb(λ) (blue).

5 Conclusion
This paper introduced a new model to combine reinforcement
learning and external knowledge. We demonstrated its ability
to solve complex and highly fluctuating tasks, trading in stock
market. Additionally, this algorithm is fully interpretable and
understandable. In a given state, we can explain the impact
of each variable and the patterns on the action selection. Our
central thesis is to enhance states representation of Sarsa(λ)
with background knowledge and speed up learning with a
sub-states mechanism. Further benefits stem from efficiently
updating eligibility traces. Moreover, our approach can be
easily adapted to solve new tasks with a very limited amount
of human work. We have demonstrated the effectiveness of
our algorithm to decrease the training time and to learn a bet-
ter and more efficient policy. In the future, we are planning to
evaluate our idea with other TD methods. Another challenge
is how to generate the rules during the training phase and dis-
card the useless rules to decrease learning time and improve

computational efficiency. Finally, we are interested in extend-
ing our experiments to new environments such as textual or
visual environments.

References
[Barto and Mahadevan, 2003] Andrew G. Barto and Srid-

har Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems,
13(4):341–379, 2003.

[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
2013.

[Bougie and Ichise, 2017] N. Bougie and R. Ichise. Deep
Reinforcement Learning Boosted by External Knowledge.
ArXiv e-prints, December 2017.

[d’Avila Garcez et al., 2018] A. d’Avila Garcez, A. Resende
Riquetti Dutra, and E. Alonso. Towards Symbolic Rein-
forcement Learning with Common Sense. ArXiv e-prints,
April 2018.

[Dundar et al.,] Murat Dundar, Balaji Krishnapuram, Jinbo
Bi, and R Bharat Rao. Learning classifiers when the train-
ing data is not iid.

[Gambardella and Dorigo, 1995] Luca M Gambardella and
Marco Dorigo. Ant-q: A reinforcement learning approach
to the traveling salesman problem. In Machine Learning
Proceedings 1995, pages 252–260. Elsevier, 1995.

[Garnelo et al., 2016] Marta Garnelo, Kai Arulkumaran, and
Murray Shanahan. Towards deep symbolic reinforcement
learning. arXiv preprint arXiv:1609.05518, 2016.

[Hausknecht and Stone, 2015] Matthew Hausknecht and Pe-
ter Stone. Deep recurrent q-learning for partially observ-
able mdps. 2015.

[Lake et al., 2016] Brenden M. Lake, Tomer D. Ullman,
Joshua B. Tenenbaum, and Samuel J. Gershman. Build-
ing machines that learn and think like people. Behavioral
and Brain Sciences, pages 1–101, 2016.

[Lample and Chaplot, 2017] Guillaume Lample and Deven-
dra Singh Chaplot. Playing fps games with deep reinforce-
ment learning. In Proceedings of AAAI, pages 2140–2146,
2017.

[Lillicrap et al., 2015] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[Louppe, 2014] Gilles Louppe. Understanding random
forests: From theory to practice. arXiv preprint
arXiv:1407.7502, 2014.

[Mashayekhi and Gras, 2015] Morteza Mashayekhi and
Robin Gras. Rule extraction from random forest: the rf+
hc methods. In Proceedings of Canadian Conference on
Artificial Intelligence, pages 223–237. Springer, 2015.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[Nison, 2001] Steve Nison. Japanese candlestick charting
techniques: a contemporary guide to the ancient invest-
ment techniques of the Far East. Penguin, 2001.

[Pal, 2005] Mahesh Pal. Random forest classifier for remote
sensing classification. International Journal of Remote
Sensing, 26(1):217–222, 2005.

[Randløv and Alstrøm, 1998] Jette Randløv and Preben Al-
strøm. Learning to drive a bicycle using reinforcement
learning and shaping. In Proceedings of ICML, volume 98,
pages 463–471, 1998.

[Safavian and Landgrebe, 1991] S Rasoul Safavian and
David Landgrebe. A survey of decision tree classifier
methodology. IEEE transactions on systems, man, and
cybernetics, 21(3):660–674, 1991.

[Singh and Sutton, 1996] Satinder P Singh and Richard S
Sutton. Reinforcement learning with replacing eligibility
traces. Machine learning, 22(1-3):123–158, 1996.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press Cambridge, 1998.

[Sutton, 1996] Richard S Sutton. Generalization in rein-
forcement learning: Successful examples using sparse
coarse coding. In Advances in neural information process-
ing systems, pages 1038–1044, 1996.

[Tessler et al., 2017] Chen Tessler, Shahar Givony, Tom Za-
havy, Daniel J. Mankowitz, and Shie Mannor. A deep hi-
erarchical approach to lifelong learning in minecraft. In
Proceedings of AAAI Conference on Artificial Intelligence,
pages 1553–1561, 2017.

[Watkins and Dayan, 1992] Christopher JCH Watkins and
Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

	Introduction
	Reinforcement Learning
	Q-learning algorithm
	Sarsa algorithm
	Eligibility trace

	Rule-based Sarsa()
	Rule-based Sarsa (Sarsa-rb)
	Prior Knowledge for Rule Generation
	Sub-states
	Eligibility Trace

	Experiments
	Sub-states
	Overall Performance

	Conclusion

