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Abstract

While many evaluation procedures have been pro-
posed in past research for artificial general intel-
ligence (AGI), few take the time to carefully list
the (minimum, general) requirements that an AGI-
aspiring (cognitive) control architecture is intended
to eventually meet. Such requirements could guide
the design process and help evaluate the potential
of an architecture to become generally intelligent—
not through measuring the performance of a run-
ning AI system, but through a white-box, offline
evaluation of what requirements have been met to
what degree. Rather than providing our estimate
of what features are necessary to achieve AGI, we
analyze a concrete task from the air traffic control
(ATC) domain to come up with a crisp set of re-
quirements that AGI would need to meet as well.
To avoid major disruptions to proven workflows in
safety-critical domains, a trustworthy, robust and
adaptable AI system must work side-by-side with
a human operator and cumulatively learn new tasks
that can gradually be introduced into the operator’s
complex workflow. Our analysis results in a set
of minimal/necessary requirements that can guide
the development of AGI-aspiring architectures. We
conclude the paper with an evaluation of the degree
to which several common AI approaches and archi-
tectures meet these requirements.

1 Introduction
The quest for creating machines that can match or exceed hu-
man intelligence across the board of all mental endeavors has
progressed in tandem with the field of computer science since
before the term “artificial intelligence” (AI) was coined, in
the middle of last century. In the time since it has become in-
creasingly clear that the goal of creating artificial general in-
telligence (AGI) is more elusive than it seemed at first, and the
AI field has shifted towards the automation of more tractable,
specialized tasks. One side effect is the not uncommon per-
ception among AI researchers that the pursuit of AGI is an
unrealistic moonshot. A common criticism is the apparent
lack of a definition of the very subject that is being pursued.

This criticism is not entirely justified: many definitions
of intelligence and AGI have been put forth (cf. [Legg and
Hutter, 2007; Wang, 1995]), as well as tests that attempt
to measure the (general) intelligence of a running AI sys-
tem [Thórisson et al., 2015; Hernández-Orallo, 2016; Mar-
cus et al., 2016; Hernández-Orallo, 2017; Hernández-Orallo
et al., 2017]. Nevertheless, it is true that these definitions and
evaluation methods have not yet guided us towards the cre-
ation of (cognitive) control architectures capable of AGI.

Here we argue for employing common software engineer-
ing methodology that starts with a requirements analysis:
What kind of performance can/should an AGI architecture ex-
hibit? Or conversely, what is the (minimal) behavioral reper-
toire expected of a true AGI system? More so than a simple
definition, a set of such requirements can facilitate the design
of AGI-aspiring architectures. A high-quality list of such re-
quirements would furthermore allow us to evaluate the po-
tential capabilities (and potential for achieving or approach-
ing AGI) of an architectural design, in an offline white-box
manner. Such analyses can make use of information we have
about an AI system (white-box) without needing to observe it
in action (offline).

In contrast, most evaluation methods do not use or require
implementation details of the AI system (they are black-box)
and must expend effort to observe, run or simulate the system
on a number of tasks (online). Offline, white-box analysis
is complementary to the usual online, black-box evaluations,
and especially useful in cases where the AI system is not yet
implemented, when we’re trying to select or design a good
candidate architecture, or in cases where design information
is available but performance data is not (e.g. when a teacher
is given a description of a learner).

Defining a set of requirements for a software system re-
quires a crisp and thorough understanding of the demands
on the system, including the tasks to be carried out and the
environment in which this takes place. In an effort to cir-
cumvent the vagueness and lack of consensus surrounding
the term “AGI”, and to avoid begging the question, we pro-
pose here to analyze the requirements of a concrete (set of)
task(s)1 from the domain of air traffic control (ATC). As this

1We consider all tasks that are relevant to AGI to be of the com-
pound type—i.e. composed of a reasonably large set of variables
and constraints, goals and sub-goals—where any part (or subtask)
of such a task could be learned and trained on by the AGI at any



task is currently carried out by human air traffic controllers,
it should be clear that any requirements for automating their
task(s) should also be required of an AGI system that could—
in principle—learn anything a human can. What results is a
minimal set of necessary requirements, that is neither neces-
sarily sufficient nor complete: While a true AGI will require
more, however, the selected task has many interesting prop-
erties that make it very suitable as a starting point for such
an analysis (e.g. it can not be easily achieved in a satisfactory
manner by contemporary narrow AI approaches), especially
in light of trustworthiness.

Much has been written on the critical need for safety and
trustworthiness in AGI [Steunebrink et al., 2016; Everitt et
al., 2018]. As our AI systems become more capable, we
would like to entrust them with more complex and impor-
tant tasks. However, this trust is not easily earned in domains
where lives are at stake, such as with self-driving cars, water
management and air traffic control (ATC). Self-driving cars
operate in a highly time-sensitive domain where split sec-
ond decisions can make the difference between life or death
and automation can potentially save many lives. However, if
and when self-driving cars are involved in accidencts, there
will always be a demand for understanding what happened
— if only to let the car (and other cars of its type) learn from
the episode. Water management tasks range from flood pre-
vention (or impact mitigation), to assuring communities have
enough clean drinking water, to infrastructure planning to let
both ships and land traffic safely and efficiently reach their
desired destinations. In such a highly complex domain with
many interlocking safety-critical tasks and many stakeholders
with competing interests, automation is only possible if the
output can be trusted by all concerned parties [Pigmans et al.,
2017]. ATC combines the time-critical nature of self-driving
cars with a human workflow that has proven to result in few
to zero critical errors (airplane crashes), and automation will
only be considered if it can similarly be trusted. The ATC do-
main is furthermore interesting because the rules can change
on a daily basis when new directives are issued, necessitating
an AGI-like ability for continuous adaptation.

The paper is structured as follows. In Section 2 we will
provide a background on definitions and tests of general-
purpose AI. In Section 3 we will describe the Arrival Con-
trol task in more detail, and describe what it has in common
with AGI. Section 4 contains a requirements analysis for an
architecture that can practically be used to automate the Ar-
rival Control task, and Section 5 evaluates several common AI
approaches and architectures on these criteria and finds that
only some AGI-aspiring architectures meet them. In Section
6 we discuss our findings, how we intend to use them, and the
implications for future work.

2 Related Work
The question of what requirements a machine with “artifi-
cial intelligence” should meet is older than the term itself. In
1950 Turing proposed to replace the question “Can machines
think?” with a related but more precise challenge to beat

time, without detrimental effects on prior learning. Therefore we
will proceed to refer to “task” in the singular.

an imitation game—now better known as the Turing test—at
which a machine would succeed if it could successfully fool
human judges into thinking that it’s human in a text-based
chat session. Five years later McCarthy et al.’s proposal to
organize the Dartmouth Summer Research Project on Artifi-
cial Intelligence stated:

We propose that a 2 month, 10 man study of ar-
tificial intelligence be carried out during the sum-
mer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is to proceed on the ba-
sis of the conjecture that every aspect of learning
or any other feature of intelligence can in princi-
ple be so precisely described that a machine can
be made to simulate it. An attempt will be made
to find how to make machines use language, form
abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves.
We think that a significant advance can be made
in one or more of these problems if a carefully se-
lected group of scientists work on it together for a
summer. [McCarthy et al., 1955]

The requirements listed here are mostly referring to emergent
performance on (somewhat vaguely stated) metrics, based on
the intuitions of our field’s founders. In the following decades
researchers have posited dozens upon dozens of definitions
that can often be viewed as short lists of similarly vague re-
quirements [Legg and Hutter, 2007].

Many evaluation methods have also been proposed to go
“beyond the Turing test” [Marcus et al., 2016] for measur-
ing the presence or degree of (general) intelligence in AI
systems [Hernández-Orallo, 2016; 2017]. These tend to be
more precise by explicitly defining the task(s)—or kind of
task(s)—on which the AI system’s performance is to be mea-
sured. Stating that an AGI system should be capable of per-
forming well on some set of tasks can certainly be viewed as
defining requirements that motivate the design of new AI ar-
chitectures,2 but it does not provide much guidance on what
that design should include.

Furthermore, these task-oriented evaluation methods are
inadequate for evaluating progress made towards McCarthy’s
definition of AI (now called “AGI”): we need ability-oriented
evaluation [Hernández-Orallo, 2017]. A cognitive ability
is one of multiple properties an agent possesses that is re-
quired for them to perform well in information-processing
tasks with corresponding properties. For humans, we have
models like Cattell-Horn-Carroll’s containing a hierarchy of
cognitive abilities, with general intelligence g at the top [Mc-
Grew, 2005] (see Fig. 1). Challenges remain for AGI to iden-
tify constituent cognitive abilities of general intelligence, as
well as how to map them onto (interactive) test batteries for

2However, such task-oriented evaluations often fall victim to
Goodhart’s law [Chrystal et al., 2003]—“when a measure becomes
a target, it ceases to be a good measure”—as researchers develop
AI systems that are specialized for the test (i.e. not general). When
the test was previously thought to be AI complete (i.e. requiring gen-
eral intelligence), this can lead to the often observed AI effect where
people stop considering something A(G)I once it has been imple-
mented.



Figure 1: Cattell-Horn-Carroll (CHC) three-stratum model of hu-
man cognitive abilities.

their evaluation [Thórisson et al., 2015; 2016].
The number of papers that include features of AGI-aspiring

cognitive architectures is too numerous for us to detail all
contents here. Such features are often mentioned in sur-
veys of cognitive architectures [Vernon et al., 2007; Sam-
sonovich, 2010; Profanter, 2012; Thagard, 2012; Goertzel et
al., 2014a; Kotseruba and Tsotsos, 2016], architectural com-
parisons [Sloman and Scheutz, 2002; BICA Society, 2009;
Thórisson and Helgason, 2012; Asselman et al., 2015; Lu-
centini and Gudwin, 2015; Schaat et al., 2015], or lists of
challenges / roadmaps towards AGI [Sloman, 1983; Sun,
2004; Duch et al., 2008; Langley et al., 2009; Laird and
Wray III, 2010; Metzler and Shea, 2011; Adams et al., 2012;
Thórisson, 2013; Goertzel et al., 2014b; Goertzel and Yu,
2014; Goertzel, 2014; Mikolov et al., 2016; Rosa et al.,
2016]. Many of these contain summaries and abridged anal-
yses of prior methods. Most contain sets of requirements that
were based on the intuitions of the researchers, rather than
an analysis of a particular complex domain (as we describe
here), and that are closer to describing what goals an AI sys-
tem should be able to achieve than to providing guidance
about how this might be achieved. The aim for our require-
ments is to, in part, suggest what kind of functional compo-
nents an AGI-aspiring architecture must implement.

3 Air Traffic Control
In this section we provide a high-level overview of the aspects
of air traffic control (ATC) that pertains to safe trustworthy
automation in complex workflows (STACW).

Air Traffic Control (ATC) is a complex and safety-critical
domain, in which ground-based air traffic control operators
(ATCOs) provide services aimed at—first and foremost—
helping airplanes get from A to B safely, efficiently, and ef-
fectively. ATC jobs are notoriously stressful as they involve
making many decisions under high time pressure that can
greatly affect the lives of hundreds of people at a time. To
comply with the complete zero-tolerance of major errors, AT-
COs have spent the last century refining their workflows so
as to ensure they avoid not 99.999% but all potential plane
crashes.

Naturally, in domains like these there is reluctance to intro-
duce any major changes into proven workflows unless they
can be trusted completely. Even systems that statistically
outperform humans may not be fielded because we cannot

be sure they won’t fail in unpredictable ways [Zhang et al.,
2012]. It is not acceptable to majorly disrupt a carefully con-
structed, safety-critical workflow by having a big monolithic
AI system take over everything at once; automated function-
ality must be introduced into the workflow gradually, and in
collaboration with a human ATCO.

ATC consists of many different services, jobs and tasks, in-
cluding arrival control, conflict detection and resolution, co-
ordination and hand-over of responsibilities over aircraft in
different zones, planning flight routes, and responding to re-
quests from pilots and colleagues. Rules, guidelines and di-
rectives can change from day to day, and ATCOs must be
able to respond adequately to any unforeseen circumstance
that might occur. Support from automation in each of these
tasks—including the managing of workloads themselves—
would be highly desirable.

Rather than hand-coding software for each given task, and
having to change it for each new (daily) directive, we would
like to build an AI system that learns to do this based on avail-
able data, knowledge, educational guidelines, experience and
interaction with ATCOs. Given these requirements, an AI
system that could learn this wide range of tasks would actu-
ally have to be quite general.

Here we focus primarily on the task of arrival control—the
task of optimizing the flow of arriving aircraft and ensuring
they maintain some minimal separation—but with an eye to-
wards the ambition to have the system expand its functional-
ity and gradually introduce it into the workflow over time.

4 Requirements
Taking inspiration from the three-stratum CHC model of hu-
man cognitive abilities [McGrew, 2005] (see Fig. 1), we have
decomposed the requirements that the ATC domain imposes
on an AI system into multiple levels (see Fig. 2), identify-
ing four high-level requirements: (1) support for a multitude
of learning/teaching paradigms to learn the diverse (sub)tasks
from different data and information sources, (2) support for
cumulative learning in order to gradually build up the sys-
tem’s functionality based on prior knowledge, (3) flexibility
in dealing with the ever-changing challenges of the domain,
and (4) understanding of how the system arrives at its deci-
sions.

A fundamental requirement of ATC is that the performance
of human ATCOs is trustworthy. This is ascertained for hu-
mans in many ways, all of which follow reasoning and com-
mon sense, such as regulations, certification, regular evalu-
ations and re-training courses, limitation on hours worked,
automatic measurement of response latency, and the fact that
ATCOs observe each other at work and can spot potential se-
rious problems that become exposed through abnormal or un-
usual behavioral characteristics.

No AI system has reached the level yet of being subject
to any of these measures (except perhaps measurements of
response delays). Trustworthiness is a complex concept that
will be difficult to measure via a single indicator. We con-
sider it to be exhibited through a combination of many re-
quirements and across the aforementioned categories—e.g. it
is important to understand how the system arrives at deci-



sions, that it robustly can deal with the challenges of the do-
main, and that it can gradually adapt to changes in response
to an ATCOs behavior.

4.1 Learning Paradigms
In order to perform the many different services, jobs and tasks
that ATC entails, it is important that an AI system is able to
learn using a multitude of paradigms, and from a variety of
data and information sources. The standard subdivision of
machine learning into paradigms of unsupervised, reinforce-
ment and supervised learning is used here as well. In addi-
tion to learning from nothing, rewards and explicit examples,
we recognize that ATCOs can impart knowledge in many dif-
ferent ways, and we would like our AI to be able to learn
from demonstrations [Billard et al., 2008; Argall et al., 2009;
Chella et al., 2006], explanations [Mitchell et al., 1986;
Dejong and Mooney, 1986; Mitchell and Thrun, 2014], argu-
ments [Možina et al., 2007], reading [Suchanek et al., 2013],
etc. We summarize these capabilities here as “learning from
teaching” [Bieger et al., 2014].

learning from input/output pairs Supervised learning is the
ability to learn a mapping from inputs to outputs based
on examples of input-output pairs [Russell and Norvig,
2003]. This requires having a way to perceive what the
output to a particular input should have been.

learning without feedback Unsupervised learning is the abil-
ity to learn patterns in the input even though no external
feedback is given [Russell and Norvig, 2003]. Examples
include clustering, anomaly detection and dimensional-
ity reduction.

learning from rewards Reinforcement learning is the ability
to learn from a series of (positive and negative) rewards.
This is usually used to learn how to behave in multi-step
control problems [Russell and Norvig, 2003]. It requires
machinery to treat certain perceptions (i.e. the rewards)
as “special” and something to be optimized for.

learning from teaching Teaching can be done in a wide va-
riety of ways [Bieger et al., 2014], each of which
might impose their own requirements on the AI archi-
tecture. For instance, imitation learning—the ability to
learn behaviors by observing another agent carry them
out [Billard et al., 2008; Argall et al., 2009]—requires
a deep understanding of the perceived actions to be imi-
tated [Chella et al., 2006], meaning the system must not
only be able to observe those actions, but also recognize
those actions, map them to its own perspective and body,
and possibly infer their intent.

4.2 Cumulative learning
In some sense the closer an AI is to the learning style of hu-
mans the easier it is to inject it into the workflow of ATC
without serious disruption. However, this does not necessar-
ily mean that the learning mechanisms must replicate human
cognitive mechanisms.

There are many features of human learning that would
make an AI more trustworthy, and those that we see as cru-
cial is what we call cumulative learning. This concept merges

some critical features of learning into a more coherent pic-
ture, and while it is compositional it helps us address some
necessary (but perhaps not sufficient) features of learning in
the context of AGI.

Cumulative learning exhibits the following learning fea-
tures:

multitask learning Multitask learning is the ability to learn
more than one task, either at once or in sequence [Caru-
ana, 1997; Teh et al., 2017].

online learning Online learning is the ability to learn contin-
uously and in real time from experience as it comes and
without iterating over it many times [Fontenla-Romero
et al., 2013; Zhan and Taylor, 2015].

lifelong learning Lifelong learning means that an AI sys-
tem keeps learning and integrating knowledge through-
out their operational lifetime: learning is “always
on” [Thrun and Mitchell, 1995; Silver et al., 2013].
Whichever way this is measured we expect at a mini-
mum the ‘learning cycle’—alternating learning and non-
learning periods—to be free from designer tampering or
intervention at runtime. Provided this, the smaller those
periods become (relative to the shortest perception-
action cycle, for instance), to the point of being consid-
ered virtually or completely continuous, the better the
“learning always on” requirement is being met.

transfer learning Transfer learning is the ability to build new
knowledge on top of old in a way that the old knowledge
facilitates learning the new [Taylor and Stone, 2009;
Pan and Yang, 2010; Lazaric, 2012; Lu et al., 2015].
While interference/forgetting should not occur [French,
1999; Hasselmo, 2017; Kirkpatrick et al., 2017], knowl-
edge should still be defeasible [Pollock, 2010; Nivel et
al., 2013]: the physical world is non-axiomatic so any
knowledge could be proven incorrect in light of contra-
dicting evidence.

few-shot learning Few-shot learning is the ability to learn
something from very few examples or very little
data [Lake et al., 2011]. Common variants include
one-shot learning, where the learner only needs to be
told something once, and zero-shot learning, where the
learner has already inferred it without needing to be told.

4.3 Flexibility
An AI system that must automate ATC tasks has to have the
flexibility to deal with the many challenges that the domain
holds.

modular An AI system is considered modular if the tasks and
subtasks that were learned can be individually turned off
by the system’s user, thereby controlling the degree to
which automation is included into the workflow.

aware of own limitations Self-awareness of limitations
means that the system can estimate risk relative to its
own capabilities based on the situation it finds itself in.
When the system assigns low confidence to a certain
situation or decision, a human must be notified.



robustness to change Robustness to change in the environ-
ment means being able to generalize good decisions to
unfamiliar conditions and deal well with unforeseen sit-
uations, surprises and distributional drift [Amodei et al.,
2016]. At worst, degradation must be graceful [Steune-
brink et al., 2016].

adaptive to changing specs An adaptive system can rela-
tively easily be adapted to changes in the requirements
or domain. E.g. if the minimum separation distance
changes, we should ideally be able to tell the system
and it would (almost instantly) adapt to the new infor-
mation. Intermediate adaptivity might mean that a par-
ticular task module needs to be retrained, whereas hav-
ing to retrain the entire system would indicate a lack of
adaptivity. (The difference with robustness is that here
the human operators know about the change in the envi-
ronment and can communicate it to the AI system.)

natural growth Natural growth is the ability of an AI system
to grow in terms of functionality solely through training
and teaching: the system does not need to be turned off
to be (partially) reconfigured or reprogrammed when the
user decides to use the AI to automate additional tasks.

handles time Handling time in an effective manner includes
reasoning about time, allocating (temporal) resources to
different subtasks, being able to respond in real time to
new situations and possibly interrupt ongoing tasks, and
deal with timing and synchronization issues in the do-
main (e.g. due to variable delays between observations,
actions and rewards).

variable i/o Variable input-output profiles mean that there is
no fixed format to either the system’s input or output.
For instance, if the system does not simply receive an
array of N numbers on each time step. This is often the
case in ATC, as the number of aircraft that are in range
changes constantly.

4.4 Understandability
To trust the decisions of a system it is important that we can
understand them. This is why there is now a big pushes
for explainable AI [Lane et al., 2005; Gunning, 2016], as
well as accountability and transparency [Barocas et al., 2014;
Dignum, 2017].

legible An AI system is considered legible if its learned al-
gorithms and decisions are expressed in a language that
humans can easily read (e.g. program code or rules).

traceable Decisions are usefully traceable if it is possible to
trace the system’s decision-making process at a level
of abstraction that we can make sense of, even if each
micro-decision isn’t understood (e.g. due to composi-
tion of low-level black box decisions).

verifiable Having functionality that is small enough to be
(automatically) verified [Khakpour et al., 2017].

5 Architecture Evaluations
The requirements in the previous section can be used for the
offline, white-box evaluation of AI system designs. Without

Figure 2: Requirements for automation in air traffic control, in light
of requirements for AGI.

running the system, we can inspect its architecture to see if
it has the components necessary to meet these requirements,
and thereby judge the architecture’s potential for automating
the ATC domain or achieving AGI.

Below we show how to do this by evaluating a number of
common approaches / methodologies to AI, as well as some
(cognitive) control architectures that were specifically made
with AGI in mind. Our analysis shows the difference between
these approaches, and can guide potential improvements by
pointing out their shortcomings (Table 1 shows a summary).
For each approach we are taking a representative architecture
and asking whether it meets the requirement out of the box
or with minimal changes (!), or if it is possible with some
effort to create a variation that might meet it (±).3

5.1 Neural Networks
Artificial neural networks (ANNs) especially of the deep
variety (DNNs) with “deep learning” constitute one of the
most popular families of machine learning algorithms to-
day [Goodfellow et al., 2016]. These algorithms have some-
what recently facilitated great strides in performance on
messy problems like human perception, language processing
and game playing. While they can often attain high levels
of performance, they fail on virtually every STACW require-
ment.

While (D)NNs constitute a large family of slightly differ-
ent approaches, they all tend to work using immense net-
works of nodes (“neurons”) with weighted connections be-
tween them. “Activation” spreads through the network from
the input nodes to the output nodes, and if feedback is avail-
able the error is “back propagated” to adjust the connection
weights so that next time the network will make a smaller er-
ror. With a lot of training data consisting of input-output ex-
amples, huge deep nets can learn surprisingly complex tasks.

3A common “issue” with such variation is that they make the
supported cognitive ability the very goal of the system, rather
than just a resource that the system must still decide on when to
use [Hernández-Orallo, 2017].



Category Support for (D)NN RL HRL (H)XCS IP DT NARS AERA

learning paradigms learning from examples ! ± ± ! ! ! ! !

learning unassisted ± ± ± ± ! !

learning from rewards ± ! ! ! ! ± ! !

learning from teaching ± ± ± ± ± ± ! !

cumulative learning multitask learning ± ± ± ± ± ± ! !

lifelong learning ! !

transfer learning ! ± ! ± ! !

online learning ! ! ± ± ± ! !

one-shot learning ± ± ± ! !

flexibility robust to change ! !

awareness of own limitations ± ! !

modular ! ! ! ± ! !

adaptable to changing specs ± ± ± ± ! !

natural growth ! !

handling of time ! !

variable i/o ± ! !

understandability legibility ! ! ! ! !

traceability ± ± ! ! ± ±
granular verifiability ± ! ± ! !

Table 1: Comparison of approaches and methodologies for achieving intelligence and automation. A checkmark (!) means the requirement
is met out-of-the-box or with minimal changes, plusminus (±) means it may be possible to create a variation with some effort that meets the
requirement, and a blank cell means that the requirement is not met. ((D)NN: (Deep) neural networks, RL: reinforcement learning, HRL:
hierarchical reinforcement learning, (H)XCS: (hierarchical) X classifier system, IP: inductive programming, DT: decision trees, NARS:
Non-Axiomatic Reasoning System, AERA: Auto-catalytic Endogenous Reflective Architecture.)

However, the activation of individual “hidden” nodes is
meaningless to humans, and the activation of many thousands
is inscrutable. Neural networks are therefor often regarded as
“black boxes” where we have no idea what they’re basing
their decisions on. One DNN can learn a complex task, but
there is no way to gradually introduce subtasks into the work-
flow or to adapt just one part. They must go over large data
sets multiple times, so online one-shot learning is out of the
question, and if one task is learned after another the first will
be forgotten.

5.2 Reinforcement Learning

Typical reinforcement learning (RL) algorithms learn online
to control some process from (usually) delayed rewards and
punishments [Sutton and Barto, 1998]. Unlike most super-
vised learning algorithms, they don’t need to know exactly
what they should have done in each moment in order to learn.

Non-hierarchical versions of RL must however take the en-
tire state space into account, which is often infeasible. Func-
tion approximation (e.g. using other methods like NNs) can
somewhat alleviate the issue. However, the learned policy
is monolithic and inscrutable to humans, resulting in similar
problems that occur with (D)NNs (except raw RL methods
have a worse track record w.r.t. performance).

5.3 Hierarchical Reinforcement Learning

In reinforcement learning the AI learns to accomplish a task
by receiving feedback about the desirability of states of af-
fairs, actions, or combinations thereof, as they occur [Hengst,
2012]. In hierarchical reinforcement learning the task is de-
composed into a hierarchy of (ideally) smaller tasks. A child
task is often viewed as a temporally extended action in the
parent task. In the ideal case, this allows for the reuse of sub-
tasks (so they only need to be learned once) and decreases the
state*action space for each smaller task.

HRL can work if your entire Task consists of reinforce-
ment learning tasks, but less well when you also have
(un)supervised learning tasks. It works especially well if a
subtask is used multiple times in different states of the parent
task.

Unfortunately, structure is very difficult to learn, so it must
typically be specified up front. Like other RL methods, the in-
dividual components are typically not interpretable, but if the
component tasks are human-understandable (which is likely
if we specified them), then a trace of invoked subtasks can
make high-level decisions somewhat understandable. Like
with other methods, there is typically no way to deal with a
variable number of aircraft.



5.4 X Classifier System
The X Classifier System (XCS) is a Learning Classifier Sys-
tem (LCS) that learns to act by evolving and tuning a pop-
ulation of classification rules [Wilson, 1995]. Over time, the
algorithm drives towards a minimal, fit, non-overlapping pop-
ulation of rules. Each rule applies in a certain situation, ”pro-
poses” an action and predicts the expected payoff of that ac-
tion (direct + expectation for best subsequent actions).

The rules are fairly interpretable, making the system as a
whole transparent.

XCS works best in classification settings where rewards
are immediate and subsequent input-action-reward interac-
tions are independent from each other. Getting it to work
with sequences of interactions and (extensively) delayed re-
wards is tricky.

5.5 Hierarchical XCS
Hierarchical XCS (HXCS) works by creating a partitioning of
input variables and having different (H)XCS agents pay atten-
tion to each [Barry, 2001]. This is essentially feature-based
decomposition as mentioned above. The main downside is
that it only seems to work if the partitions are independent of
each other: i.e. if exactly one of the partitions is relevant to
the solution.

Decision-based decomposition does not seem entirely im-
possible, although it requires modifications of HXCS to deal
with heterogeneous sub-agents. This is likely to lead to prob-
lems, since only one sub-agent gets to make a decision at each
instant, and if they use different confidence metrics, it will be
difficult to decide between them and avoid some agents being
“starved”.

5.6 Inductive Programming
Inductive programming (IP) is a learning technique where
(computer) programs are inferred from experience/data,
typically using methods resembling induction or abduc-
tion [Flener and Schmid, 2008]. By contrast, “deductive pro-
gramming” would synthesize a program from a specification.
While most learning paradigms are more prone to produce
relatively simple pattern matching, IP produces a potentially
recursive algorithm that can more easily capture a process. IP
is usually used to produce declarative logic programs (ILP) or
functional programs (IFP), and not typically to create imper-
ative programs which probably fit more naturally to the AC
domain.

The synthesized programs are interpretable, can deal with
variable inputs, and can potentially form a hierarchy of
reusable programs which could be adapted separately. Cur-
rent approaches are not really capable of natural growth, cu-
mulative learning, or dealing with unknown situations. Fur-
thermore, it is typically necessary for a programmer to pro-
vide a large portion of the program, because it’s only feasible
to fill in some minor details through learning.

5.7 Decision Trees
Decision Trees (DTs) are classification systems that are
formed by a tree of (often binary) rules or questions [Kot-
siantis, 2013]. For a particular input, we start with an hypoth-
esis that it might belong to any input class. As we descend

through the DT and answer its questions, we eventually have
enough information to (hopefully) classify the input. Algo-
rithms like ID3 and C4.5 can be used to generate DTs through
supervised learning, or in other words: to learn what ques-
tions should be asked.

The main strength of DTs is their understandability. They
also have some limited ability to do online, cumulative and
one-shot learning, although this may result in very sub-
optimal decision trees. There are also algorithms that support
reinforcement learning. In one sense, DTs are obviously hi-
erarchical, but learning algorithms don’t tend to make use of
this for transfer learning between branches. Similarly, there
is very little meaningful modularity.

5.8 NARS
The Non-Axiomatic Reasoning System (NARS) aims to be
a general-purpose intelligent system that learns from expe-
rience and adapts to unknown environments [Wang, 2013].
It is built from the ground up around the Assumption of In-
sufficient Knowledge & Resources. The multi-layered non-
axiomatic logic allows the system to model itself and its own
knowledge and limitations.

NARS can grow and expand functionality naturally with-
out re-programming by learning cumulatively, it should be
robust to changes in the environment and—given human-
understandable inputs—the models are in principle inter-
pretable. The system can provide a trace of activity leading to
decisions, and the only potential obstacle to full understand-
ability is that the reasoning traces can become too large to
easily comprehend with the limited human brain. The system
can learn on-line and occasionally in one shot, it is robust to
changes and self-aware of its limitations, and importantly it
can easily deal with variable numbers of inputs.

We believe NARS indeed meets—or can be adapted to
meet—all of the STACW requirements. The main issue with
using it so far has been that NARS is a highly complex, per-
haps overly general-purpose learning and reasoning system,
which is difficult to get started with. We estimate that it would
take about one year for a graduate student to sufficiently fa-
miliarize themselves with the NARS theory and implemen-
tation to create a version that would work for this project,
assuming extensive help or collaboration from someone inti-
mately familiar with NARS.

5.9 AERA
Like NARS, the Autocatalytic Endogenous Reflective Archi-
tecture (AERA) aims to be a fully general control architec-
ture [Nivel et al., 2013]. From observation and direct experi-
ence it creates small (”peewee-size”) models of the relation-
ship between observable variables that relate to itself and the
environment, that are chained together into complex knowl-
edge networks at runtime to control complex decisions and
behaviors. AERA was built with AIKR in mind and special-
izes in finding causal structure, taking into account the tempo-
ral nature of the domain. This makes it well-suited to control
tasks with resource constraints. AERA’s small models are in-
terpretable and goals and subgoals are explicit, so decisions
and cognitive events can be traced at any level of detail.



Issues with AERA are similar to NARS. In addition, the
system is not nearly as well documented, is highly complex
and difficult to use. However, the demonstrations that have
been produced cover a rather extensive range of the require-
ments identified here for ATC.

6 Discussion
We have analyzed the requirements for trustworthy automa-
tion in light of a safety-critical domain—air traffic control—
and analyzed the degree to which existing AI architectures
and approaches meet them. As these requirements are con-
sidered a subset of the features a true AGI would need to con-
tain, the results are of relevance not only to those who are
interested in implementing trustworthy automation in safety-
critical contexts but to the AGI field as a whole.

Future work will involve expanding on these in light of
other safety-critical domains, such as human transportation,
water management, nuclear power plant control, autonomous
driving, and the like.
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[Thórisson et al., 2015] Kristinn R. Thórisson, Jordi Bieger,
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