User Tools

Site Tools


public:t-701-rem4:lab

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
public:t-701-rem4:lab [2007/10/01 14:50] helgipublic:t-701-rem4:lab [2024/04/29 13:33] (current) – external edit 127.0.0.1
Line 1: Line 1:
  
 +See Myschool for original script (uncorrected)
  
-See Myschool+The following R code should be copied task by task (i.e. comment and code) and exectued in R. Its purpose is to show a simple prototype for an action, you should think about it, understand and try some variations. 
 + 
 +<code bash> 
 +# T-701-REM 4  
 +# 2007-10-01 
 +# Subjects from ch. 4.1, 4.3, 4.6 in ISwr. 
 +# limit "haed" data to men 
 +# suppose the workspace "haed.R" has been loaded 
 +men <- subset(haed, kyn=="karlar"
 +str(men) 
 +attach(men) 
 +mean(cm) 
 +sd(cm) 
 +length(cm) 
 + 
 +# Do we need to change our established opinion (null hypothesis, "H0"
 +# that average height of men is 180cm? 
 +t.test(cm, mu=180) 
 + 
 +# Computation of results element by element: 
 +# Standard error of the mean is the standard deviation of the sample distribution 
 +# of the mean (called SEM on pg. 82 in ISwR) 
 +# Assume here that the Central Limit Theorem can be used  
 +stderr <- sd(cm) / sqrt(length(cm)) 
 +stderr 
 +# The value t is a measure of how far the sample is from the established opinion  
 +tvalue <- (mean(cm)-180) / stderr 
 +tvalue 
 +# Is this a big value in this context? 
 +# The p-value is the probabililty of a sample this far or further from H0 if H0 is correct 
 +# Low p-value (less than conf.level with a default value of 0.05) 
 +# indicates that H0 is wrong or we have a freak sample 
 +# Compute p-value corresponding to this t for df =38-1 
 +2 * (1-pt(tvalue, 37)) 
 +# Confidence interval for the mean 
 +c( mean(cm)+qt(0.025, 37)*stderr, mean(cm)+qt(0.975, 37)*stderr) 
 +#  
 +# Try several variations of conf.level,  
 +# including 1-0.2659205 (Note: 1 minus the p-value, corrected 2007-10-06) 
 +# ############################ 
 + 
 +# Compare heights of men and women (to see how t.test works) 
 +detach(men) 
 +rm(stderr, tvalue) # some cleanup (added 2007-10-06) 
 +attach(haed) 
 +# Test if the diff is 0 (reason for the name Null Hypothesis!) 
 +t.test(cm~kyn) 
 +# Conclusion? 
 + 
 +# Test if cm over 100 is a reasonable approximation to kg: 
 +t.test(kg, cm-100, paired=T) 
 +# Conclusion? 
 + 
 + 
 +###################################### 
 +
 +# Another way of comparing group means (can be used with more than 2 grps) 
 +# ANOVA, ISwR, Ch. 6 (6.1 intro, 6.1.2, 6.5) 
 +# compute a linear model. 
 +# Use a categorical explanatory variable: 
 +lm(cm~kyn) 
 +summary (lm(cm~kyn)) 
 +anova(lm(cm~kyn)) 
 +# Compare "Mean Sq" of "Residuals" with 
 +var(cm) 
 +# Compare total of "Sum Sq" column formula on middle of pg. 112 and with 
 +sum((cm-mean(cm))^2) 
 +var(cm)*51 
 +# Conclusion? 
 + 
 +###################################### 
 +
 +# The classical "best line" is a linear model too: 
 +lm (kg~cm) 
 +summary(lm(kg~cm)) 
 +anova(lm(kg~cm)) 
 +# One reason for the limited standard output of lm: 
 +plot(cm, kg) 
 +abline(lm(kg~cm)) 
 + 
 +# Exercise: 
 +# Try to find out if the point (mean(cm), mean(kg)) lies on the line 
 +</code>
  
  
  
/var/www/cadia.ru.is/wiki/data/attic/public/t-701-rem4/lab.1191250212.txt.gz · Last modified: 2024/04/29 13:32 (external edit)

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki