Next revision | Previous revision |
public:rem4:rem4-20:philosophy_of_science_ii [2020/01/12 22:02] – created thorisson | public:rem4:rem4-20:philosophy_of_science_ii [2024/04/29 13:33] (current) – external edit 127.0.0.1 |
---|
=====Philosophy of Science===== | [[http://cadia.ru.is/wiki/public:t-701-rem4-20-1:rem4-20-lecturenotes|2020 Lecture Notes]] |
| |
====Concepts==== | -------- |
| |
| |
| ===== Philosophy of Science II ===== |
| Theory \\ (ísl. kenning) | Explains the connections between things in the world. \\ A set of statements or principles devised to explain a group of facts or phenomena, especially one that has been repeatedly tested or is widely accepted and can be used to make predictions about natural phenomena. | | |
| Hypothesis \\ (ísl. tilgáta) | A prediction about the relationship between a limited set of phenomena, as explained by a particular theory. \\ Any statement about the world that must hold true if a given scientific theory is correct. | | |
| Data \\ (ísl. gögn) | Typically "raw numbers" -- only contain low-level semantics. | | |
| Information (Icel. upplýsingar) | Processed and prepared data -- "data with a purpose". | | |
| Randomness | It is hypothesized in quantum physics that the universe may possibly be built on a truly random foundation, which means that some things are by their very nature unpredictable. Randomness in the aggregate, however, does seem to follow some predictable laws (c.f. the concept of "laws of probability"). | | |
| Sampling | Sampling theory uses statistics to tell us \\ (a) how many random measurements we need to make to make a prediction about a whole group of which they are members and \\ (b) how reliable the results are given the particular methods of sampling and recorded variations in the data. \\ (Notice: not the same as Nyquist's sampling theorem, which states that to capture a waveform accuractly in digital form you need to sample it at more than twice its frequency.) | | |
| Empiricism | All knowledge comes (ultimately) through the senses. | | |
| Deduction \\ (ísl. afleiðsla) | "The facts speak for themsevles". \\ In deduction it's impossible for the premises to be true and the conclusion to be false. "You've got the facts, all you have to do is put them together, draw a natural conclusion." \\ Usually goes from the general to the particular. | | |
| Induction (ísl. aðleiðsla, tilleiðsla) | A generalization from a set of observations. \\ Generalization can be about a class of observed phenomena or about a particular unobserved phenomenon that is part of the class. | | |
| Abduction | Inferring cause from (observed) fact. | | |
| Experiment | Typically refers to the most powerful method of science, the comparative experiment. \\ There are other reliable ways of studying the world, and they can be scientific if one realizes their limits. | | |
| Tautology \\ (ísl. klifun, hringskýring) | A 2-part sentence where the second part sounds like a logical conclusion of the first part but is simply a restatement of it. \\ Example: "All Icleanders love shopping — because it's fun!" | | |
| The key to the advancement of scientific knowledge. | The ability of individuals and groups to create verifiable "coherent stories" of how phenomena in the world are connected, and produce rigorous models that support the stories, is a necessary condition for scientific progress. | | |
| |
\\ | |
\\ | |
\\ | |
\\ | |
| |
| |
====Science: Historical Beginnings==== | ==== Concepts ==== |
| |
| | Induction \\ (ísl. aðleiðsla) | A generalization from a set of observations. \\ Generalization can be about a class of observed phenomena or about a particular unobserved phenomenon that is part of the class. \\ Considered a key to the advancement of scientific knowledge. | |
| | Scientific theory \\ (ísl. vísindakenning) | “A set of statements or principles devised to explain a group of facts or phenomena, especially one that has been repeatedly tested or is widely accepted and can be used to make predictions about natural phenomena.” | |
| | Prediction, predictive powers (ísl. forspá, forsagnargildi) | A good theory can explain and predict. (More on this below.) | |
| | The value and power of a scientific theory | Measured by (a) its ability to explain, (b) its ability to to be withstand attempts to falsify it and (c) its ability to predict. | |
| | Scientific theories in the natural sciences | Build on comparative experiments as primary method of investigation. Comparative experiments are attempts to falsification; they test the predicitive power of theories. Results are used to tune the theory. | |
| | Prediction and falsification: \\ Opposite ends of the same dimension | A theory's strength can be measured at least in two ways, (a) by its power to predict and (b) by its ability to withstand attempts to falsification. | |
| | The role of "storytelling" | The ability of individuals and groups to create coherent verifiable stories (explanations) of how phenomena in the world are connected, and produce rigorous models that support the stories, is a necessary condition for scientific progress. | |
| |
| Greek philosophers | Roughly 2000-3000 years ago \\ Plato, Aristoteles (his pupil) and Socrates (a big influence) -- provided the beginnings of modern philosophical thought, which later became modern philosophy and science. | | |
| Roger Bacon \\ (1214 – 1294) | English philosopher. \\ One of the earliest proponents of the scientific method (empiricism). | | |
| Descartes \\ (1596 - 1650) | French philosopher. \\ Enormous influence on math (inventor of analytic geometry), science, philosophy of mind and philosophy in general. "I think, therefore I am." "Cogito ergo sum." | | |
| Sir Francis Bacon \\ (1561 - 1626) | English philosopher. \\ Influential proponent of the scientific method. Emphasized induction as the main principle of scientific progress. | | |
| Galileo Galilei \\ (1564 - 1642) | Italian philosopher and polymath. \\ Influence on the use of quantitative measurements and the use of math. | | |
| David Hume (1711-1776) | British philosopher. \\ Known for contributions to theories of knowledge and causation. Produced rigorous arguments that we can only base our knowledge on experience (the "copy principle"). | | |
| Karl Popper \\ (1902 - 1994) | Austrian-British philosopher. Most famous for his claim that theories can only be tested through the falsification of hypotheses. \\ Book: The Logic of Scientific Discovery (1959). | | |
| Thomas Kuhn \\ (1922 - 1996) | American physicist and philosopher. Most famous for his theory of scientific change as intermittent challenges to the status quo. \\ Book: The Structure of Scientific Revolutions (1962). | | |
| Imre Lakatos \\ (1922 - 1974) | Hungarian philosopher. Proposed a "realistic" recombination of Kuhn's and Popper's views on science, focusing on research programs as a key organising concept. | | |
\\ | \\ |
\\ | \\ |
\\ | \\ |
\\ | \\ |
| ====The Role of Science: To Explain the Universe==== |
| |
| | Scientific Theories | Deepen our //understanding// of the universe. | |
====Falsification of Hypotheses==== | | A Scientific Theory | 1. Predicts. \\ 2. Supports goal-achievement. \\ 3. Explains. \\ 4. Models (re-create). \\ Any one of these can be partial. | |
| Very powerful method | Given theory X, if one can deduce a relationship that has to hold between A and B, where A and B are the domain of a particular theory, and that relationship is falisifed through an experimental procedure that can be replicated by anyone, then obvioulsy theory X has been disproven. | | | Phenomenon | A phenomenon is any set of (partially or fully) observable/measurable variables in the world. An event, a thing, a system. | |
| Problem | Although scientific knowledge is the most reliable knowledge there is, most scientific theories at any point in time are theories in flux. But that is the key strength of scientific knowledge (over e.g. fairytales, urban myths, religion, etc.) -- so perhaps more of a feature than a bug! | | | Full Understanding | Full/complete understanding of a phenomenon means we can predict any and all aspects of the phenomenon, we can achieve goals with respect to any and all attributes of the phenomenon, we can explain any and all aspects of the phenomenon, and we can model any and all aspects of the phenomenon -- our model is complete. | |
| Theories in flux | Counter to what many think, theories almost never pop out complete and finished. The become assembled piece by piece, until there are so few pieces left that someone figures out the full picture. In the mean time, however, it is easy to falisfy hypotheses based on the theory, which, in the early stages, may not be much of a theory. | | | Complete Models | Allow us to create software simulations that approach a correct and complete representation of the phenomenon. | |
| Science builds theories | The theory--hypothesis distinction is a convenience. In reality this is more like a continuum, resulting from the fact that theories are in various stages of growth. | | |
| Conclusion | We need a mixture of methods during the development of theories. | | |
| |
\\ | \\ |
\\ | \\ |
| |
| ====Induction is not Enough: Refutability of Scientific Theories==== |
| |
====Why We Need Statistics & When to Use it==== | | Karl Popper | "Induction" as a process for producing **scientific** theories, does not exist in the form proposed. | |
| When building theories: We go from the particular to the general | The path of induction: We make observations and draw conclusions. | | | Popperian extremism | While we can say that Popper was an extremist when it comes to his discussion of theories, we can agree with him that the role of science is to come up with theories that are falsifiable. | |
| Statistics are inappropriate in the early stages of scientific work | When we are trying to "wrap our brain around a problem". | | | Popper's favorite examples of pseudotheories | Sigmund Freud's and Karl Marx's | |
| When to use statistics | When trying to uncover relationships between phenomena using measurements of particular limited observations. \\ To have an idea of the generality of a few isolated results, we use statistics. \\ Statistics is essential for any usability study, because it makes it easy to extrapolate results from experimental data with human subjects. \\ It is essential when we want to generalize from particular observations done with imprecise measuring devices and/or under condtitions where we cannot control all independent variables. | | | Karl Marx's economic theory | The rich will be richer and the poor poorer ( - the path of the West?) | |
| Randomness | Key concept in statistics. | | | Popper's idealism | We cannot simply take the last 100 or 200 years of natural science as the ideal of science and assume that anything that doesn't look like it is psudo-science. That would be ignoring at least 2000 years of what Popper would call psudo-science: Philosophical beginnings of all scientific fields. | |
| | Scientific methods (and fields) evolve from early philosophical considerations | All sciences have begun as speculations. Math was developed to help with managing complexities in the natural sciences; we need other, more powerful tools for some of the remaining problems. | |
| | Darwin's theory of evolution | According to a large proportion of modern scientists in all fields, Darwin is the greatest scientist of the last milennium. Because his theory is not falsifiable it would rank high on Popper's list of **bad** scientific theories. | |
| | \\ Freud | An important thing to keep in mind is not to let egos and personal admiration get in the way of critical thought. Perhaps it may be justified that Freudian methods are still being used in clinical treatment of mental patients, but perhaps not: We should let the numbers, as produced by comparative experiments and comparative studies, tell us whether these methods are worth holding on to. (If such comparative studies are too expensive to do properly, perhaps we should value mental sanity more!) | |
| | Freud and Marx: \\ twilight zone | These teachings sit somewhere between philosophy and a mature science. (Freud was one of the first major names to put forth the idea that the mind has parts.) As with all philosophy and science one must look at what they said when they said it and put aside idealism and personal admiration. | |
| | Simulation | Only recently have we developed a tool that are powerful enough to study many of the phenomena that we experience every day, such as the mechanisms of commerce, the forces of the cosmos, the mysteries of thought. That tool is computer simulation. | |
| |
\\ | \\ |
| |
| |
====Why We Need Simulation and When to Use it==== | |
| Simulation | Simulations that "tell a story of a system" by integrating several observable and non-observable variables into a coherent whole, they can act as proper scientific theories. \\ Simulations can also act as hypotheses when they concretize theories. \\ Simulations are the newest methodology that science offers in our study of the (natural) world. | | ====The Importance of Creative Thought in the Progress of Science==== |
| Model | A //model// is a representation of a phenomenon. A model of the earth-sun system can be created by a ball and a flashlight. Simulations are an executable version of a model. | | |
| Software Simulations | Implement a //model// of a phenomenon as runnable code. The model, and its implementation as a simulation, are informed by a higher-level theoretical or philosophical stance (example: A materialistic view of the world). | | | Creativity in Science | No good theory exists without the creative activity of a human! \\ Creativity is one of the main driving forces of science, because without new ideas, little or no progress could be made. | |
| Verification / Grounding | To ensure that the results produced by a simulation match to reality, a process of //grounding// must be performed whereby the truthfulness of the model implemented as a simulation is ensured to represent the phenomenon correctly. This process is difficult; typically only a small part of the full model is something that is well understood in the physical world. It is expensive because for any reasonably complex system this process takes time. | | | The role of induction | In an effort to make the creative process more "objective" or "rule-like", philosophers and scientist have often argued that the main ingredient is "logical induction", \\ generalization that flows "logically" from a number of //observations//. \\ This view ignores the creative component of scientific work and may be responsible for \\ why science education is in many cases taught in a boring fashion. | |
| When to use simulation | When the complexity of that which is to be modeled/understood becomes so great that mathematical models are intractable, or when they are not possible for other reasons, and experiments with standard hypothesis falsification would take decades, centuries or millenia. | | | Pure "Popperism" | Pure Popperism suppresses the "storytelling" part of scientific enterprise \\ By shifting empahsis onto the falsification as the most important part of science the creative element is suppressed | |
| | The result? | We end up with a much lower number of creative people* in science than otherwise. It is possible that this slows down the progress of science. | |
| |
| <sub>*NB: This does not refer to the common phrase "creative people" as in those who play instruments, create clay sculptures or work at advertisement agencies. This refers to the common notion of the concept of creativity.</sub> |
| |
\\ | \\ |
| |
| |
==== The key to the advancement of scientific knowledge==== | |
| Theory: The coherent story | A scientific theory provides a consistent story explaining the causal relationships between a set of observable or hidden factors. The ability of individuals and groups to create coherent "stories" of how phenomena in the world are connected, and produce rigorous models that support the stories, is a necessary condition for scientific progress. | | |
| Support of evidence | The strongest form of evidence is rigorous hypothesis testing using scientific experimentation: clearly thought-out tests of the claims that naturally fall out of the Theory to be tested. It helps if the hypotheses concern unexpected results. | | |
| Rigor | A theory is more rigorous than another if it includes more clear definitions, tighter relationships with observable and measurable factors that are more independent of external factors (such as the observer/measurer) than the other. The use of mathematics is not a guarantee for rigor. | | |
| Creating hypotheses | Use both induction and deduction | | |
| Creating experiments | Use logic and tradition | | |
| Executing experiments | Use care | | |
| Interpreting results | Use rationality. Follow the data! ("Follow the duck, not the theory of the duck.") | | |
| |
\\ | \\ |
\\ | \\ |
\\ | \\ |
\\ | |
//EOF// | //EOF// |