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Abstract

I seek to define rigorously the concept of an emergent
phenomenon in a complex system, together with its im-
plications for explanation, understanding and prediction
in such systems. I argue that in a certain fundamental
sense, emergent systems are those in which even perfect
knowledge and understanding may give us no predictive
information. In them the optimal means of prediction is
simulation. I investigate the consequences of this for cer-
tain decidability and complexity issues, and then explain
why these limitations do not preclude all means of doing
interesting science in such systems. I touch upon some
recent incorporation of this work into the investigation of
self-organised criticalities.

1 Motivation and Objectives

The calculations were so elaborate it was very
difficult. Now, usually I was the expert at this; I
could always tell you what the answer was going to
look like, or when I got it I could explain why. But
this thing was so complicated I couldn’t explain why
it was like that.

So I told Fermi I was doing this problem, and
I started to describe the results. He said, “Wait,
before you tell me the result, let me think. It’s going
to come out like this (he was right), and it’s going to
come out like this because of so and so. And there’s
a perfectly obvious explanation for this—”

He was doing what I was supposed to be good
at, ten times better. That was quite a lesson to me.
Richard Feynman

The defining characteristic of a complex system is that
some of its global behaviours, which are the result of inter-
actions between a large number of relatively simple parts,
cannot be predicted simply from the rules of those under-
lying interactions1.

The word “simply” in the preceding paragraph is some-
what troublesome. I set out to explain, justify, under-
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1Chaotic systems (in the mathematical sense of the word) which
inherently evade prediction can be incorporated into this definition,
by allowing the fact that for such systems we know and under-
stand, in a quantitative way, precisely how and when our predic-
tions will be deficient due to inadequacies in our knowledge of the
initial conditions.

stand and rigorise, in the context of such systems, what
“simply” means.

With that in mind, let us hypothesise the concept of
an ‘emergent phenomenon’ as a large scale, group behav-
iour of a system, which doesn’t seem to have any clear
explanation in terms of the system’s constituent parts.
Rather than viewing this as the first step in the hierar-
chical evolution of hyperstructures[1], I am interested in
‘first-order emergence’ in its own right, as it is currently
more amenable to a precise formalisation than the elusive
increase in complexity one observes in natural evolution.

Why is it that we seem to be incapable of answering the
interesting questions about how and why the final state
was reached? In the context of the above quotation, can
we always find, or meaningfully postulate, a person like
Fermi who can solve our problems through a deeper un-
derstanding than our own — side-stepping all of our com-
plicated calculations? More succinctly, do truly emergent
phenomena exist?

In order to address these issues, we shall need to clar-
ify what we mean by a ‘clear explanation’ and what we
mean by ‘understanding’. This is especially warranted
due to the misunderstandings inherent in different peo-
ple’s working definitions of such terms in different fields -
complexity and emergence have become very much vogue
labels for problems in fields as diverse as economics, ar-
tificial life, artificial intelligence, neuroscience, and even
in the study of cultural change and development. I will
use the term ‘emergent system’ with the understanding
that not all phenomena observed in that system will be
emergent.

1.1 Explanation

An explanation is some type of answer to the question
‘Why did X happen?’. It can contain any or all of the
following characteristics:
• “What precise sequence of events and interactions

caused X to happen in this situation?” We argue that we
can reduce the problem to its constituent interactions, all
of which we can explain (often in a precise, quantitative
fashion). Thus we have explained the connection between
our initial state and the event X in a causal fashion. This
sort of explanation can be used either as pre- or post-
explanation of the event2.

2Most scientists would not deem this nor its associated mode of
understanding as a sufficient characteristic of a definition of either



• “What were the fundamental details of the initial
state which caused X?” This allows us to generalise and
determine some characteristics of the class of initial states
which bring about X, as compared with the space as a
whole. If we can’t generalise, we may reach the conclusion
that we were dealing with a special case.
• “Assuming this situation isn’t special in any way, why

did X, rather than Y, Z, . . . happen?” This is an elabo-
ration of the previous point. Presumably we can imag-
ine a number of different outcomes to which the system
could progress (If we’re so sure it’ll reach X, why aren’t
we researching something more interesting). Therefore
we would like to have some form of explanation for the
mapping between different classes of initial state, and the
different outcomes X, Y, Z, . . .

1.2 Understanding

We need to understand the legitimacy of the proce-
dures and applications contained in the previous expla-
nations. Therefore, we either understand, fundamentally,
the mathematical tools and techniques used in carrying
out the rules of the system or believe in the validity of
the body of theory which leads to them. If we are only
interested in the abstract concept of emergence then this
is a sufficient characterisation.

Otherwise, if we are interested in legitimising the ap-
plicability of a particular system to an external field of
study, we must understand how that field incorporates the
system into its own phenomenology. For instance we may
wish to use our results to make statements about physical
or economic systems, and in such a case we would like to
justify the legitimacy of such claims within an accepted
framework of such fields.

Let us now examine successive levels of understanding,
in an analogous manner to that for explanation.
• “I understand the rules which govern the actions of

every single agent and interaction in the system, pre-
cisely.” I could carry out a simulation of the system to
explain precisely why (in the first sense above) X hap-
pened.
• “I understand the rules and the arena in which they

operate sufficiently well that I can make predictions of the
outcome very rapidly from the initial state alone, with-
out having to calculate every interaction.” I have some
deeper understanding of the system and the legitimising
tools, such that I can perform an analysis which reveals
some symmetries (probably abstract) which enable me to
calculate the outcome more directly. This analysis will
presumably reveal at least a partial characterisation of
the space of initial states, whose boundaries may have to
be sharpened by means of simulation.
• “My analysis and understanding of the system is suf-

ficient to give a clear, precise classification of the space of
initial states in terms of the system’s outcome.” Here we
have achieved complete success with the previous method
of analysis, and developed a mapping from the space of
initial states to the space of outcomes described by, for
example, a closed-form expression.

‘explanation’ or ‘understanding’.

2 Emergent Phenomena

Now, a simulation of a system which arrives at a given
result, and the information contained in the intermediate
steps of such a simulation, clearly comprise some form of
explanation, which will indeed be very useful to explain
some phenomena. If developed in an external fashion,
it at least demonstrates sufficient understanding of the
original system so as to be able to reproduce its behaviour.
This is clearly an important step.

To return to our motivating quotation, however, surely
if we really understand a system, we shouldn’t need to per-
form such a simulation. We would understand both the
circumstances which are necessary for each relevant phe-
nomenon to arise, and the correlation between the initial
state and such circumstances. We could then say, directly,
whether and why X, Y or Z will happen.

There is clearly a continuum of levels of difficulty and
complexity of analysis. One property of a system will be
the minimum level of analysis to which it will yield. To
couch this in computational terms, there is a minimum
amount of computation which needs to be carried out
to predict any given phenomenon. With this in mind, I
propose the following definition, which will be made more
mathematically precise in the forthcoming sections:

Definition 1 A true emergent phenomenon is one for
which the optimal means of prediction is simulation.

What we mean by a ‘prediction’ is left deliberately
vague - it may be precisely quantitative or just a loose
classification. With that proviso, rather than phrasing
this definition as a hypothesis about our concept of ‘emer-
gence’, I prefer to use it as a formalisation of the term
‘emergent’ in the discussion which follows. I seek to
demonstrate the viability of the above definition as an
axiom in the study of emergence in complex adaptive sys-
tems. Note that I have yet to demonstrate the existence
of emergence.

Emergence as I describe it here has been loosely termed
‘computational emergence’ by [4]. However, abstract
computer simulations have been used ever more frequently
to gain an understanding of physical phenomena[13, 7]
and in the evolution of specific functionality[9]. So com-
putational emergence can, I feel, bear upon Cariani’s
‘thermodynamic emergence’ and ‘emergence relative to a
model’.

So, emergent phenomena are those for which the
amount of computation necessary for prediction from an
optimal set of rules, classifications and analysis, even de-
rived from an idealised perfect understanding, can never
improve upon the amount of computation necessary to
simulate the system directly from our knowledge of the
rules of its interactions. I posit that this definition con-
curs with the wishy-washy heuristic sense people mean
when they (ab)use such terms as ‘emergent behaviour’
and ‘emergent complexity’3.

3There are of course some completely un-loaded uses of the word
emergence, such as to describe the hardness of a rock, or the colour
of an object.



Firstly note that the predictive difficulty of a phenom-
enon will depend upon both the size, n, and the interac-
tion complexity of a given member of a family of complex
systems.

I argue that there is no discontinuous separation be-
tween emergence and non-emergence. Emergence is
purely the result of a phase change in the amount of com-
putation necessary for optimal prediction of certain phe-
nomena. To explain this phase change, we need to look
at the two means of prediction we can use:
• Let s(n) be the amount of computation required to

simulate a system, and arrive at a prediction of the given
phenomenon. At times we may wish to consider this an
idealised quantity referring to the optimally tuned simu-
lation (“God’s simulation”), but always a simulation.
• Our ‘deeper level of understanding’ of the symme-

tries of the system (in both the obvious and abstract
senses), has allowed us to perform a creative analysis and
deduce the future state whilst, we hope, circumventing
most of the previous-required computation. Let u(n) be
the amount of computation required to arrive at the result
by this method.

I shall shortly address the issue of defining these
‘amounts of computation’ more precisely, but for the mo-
ment let us assume this can be done in a useful manner.
Then the above definition states:

u(n) < s(n) ⇒ the system is non-emergent.
u(n) ≥ s(n) ⇒ the system is emergent.

For simple systems, obviously u(n) � s(n) (think of
statistical physics), but for many classes of system, as
we increase their size and rule complexity, there will be
a phase change where the curves u(n) and s(n) cross4.
The crux is that there is no discontinuity separating non-
emergent from emergent systems. There is just a phase
change in the optimal means of system prediction. Be-
yond this, perfect understanding of the system does no
better than a simulation. All useful predictive knowledge
is contained in the accumulation of interactions.

Before proceeding further, let us return to the issue
of defining u(n) and s(n). I aim this analysis primarily
towards discrete, deterministic systems, although many
of the ideas could clearly be made more widely applica-
ble. The obvious problem is that the time required to
complete a given computation is machine-dependent. For
finite computations the time required by different Turing
machines is just related by an arbitrary polynomial. If
this phase transition is a real phenomenon, it shouldn’t
be machine-dependent. To remove this dependence, we
must take into account the complexity of the Turing ma-
chine calculating the predictions. I therefore propose the
following definition:

Definition 2 The amount of computation, c, for some
process is given by

c =
∑
s∈S

(complexity of s)

4I shall justify this statement later.

= (# of steps).(complexity of each step)

where S is the set of all steps required in the computation,
and the latter equation is true only if all computational
steps are the same.

The complexity of a step is measured in terms of the
Kolmogorov complexity of a representation of the compu-
tation - i.e. the minimal description length.

To justify the machine-independence of this definition,
consider a general cellular automaton (which clearly falls
within our definition of a complex system), with K possi-
ble states for each cell, and a dependence neighbourhood
of R cells.

Given n(R − 1) + 1 adjacent initial cell-states, we can
determine the state of a single cell at the bottom of a
light-cone after n time-steps in just n + (R − 1)n(n −
1)/2 ≈ 1

2Rn2 rule applications. The CA is a mapping
from a set of size KR to one of size K. As this mapping
may be completely arbitrary, we can represent each step
with some (log2 KR).(log2 K) = R.(log2 K)2 bits. So, to
leading order, s(n) = 1

2 (nR log2 K)2.
I shall now argue that s(n) is invariant under the fol-

lowing transformations.

1. Pre-calculating a larger table, so that we need simu-
late only every l’th step, by using a larger neighbour-
hood (of size R + l(R− 1)).

Clearly n → n/l, R → R + l(R − 1). Thus s(n) is
reduced by a factor (1 − 1/R + 1/l)2, which is sec-
ond order, and only significant in the limit of large
memory (l) and small R.

2. Using N machines in parallel to simulate the system.

s(n) is obviously unchanged except for a small in-
crease due to the overhead involved in splitting up
the problem.

3. Mapping the CA onto another with more states, such
that a single cell corresponds to several in the original
system, but with smaller neighbourhoods.

Assume we compress a cells into 1, which will now
have K ′ = Ka possible states. R′ ≈ R/a, and s(n)
is unchanged.

4. Using any Turing machine to simulate the CA.

I shall not attempt to consider a general transfor-
mation, but rather appeal to the intuitive idea that
increases in Kolmogorov complexity will offset any
decrease in computational steps. I postulate that this
is true for complex systems in general, not just CA.

Having identified a fundamental interactive unit, and
the complexity of the interaction rules for any given sys-
tem; we can define all computational amounts in the
above manner. Let us consider an idealised means of pre-
diction in that complex system, requiring an amount of
computation uopt(n), based on perfect understanding.

Definition 3 The emergence ratio, ξ = uopt(n)/s(n).
The emergence coefficient, ζ = − log ξ

log n



Where ζ is only really useful if u and s are not exponen-
tial in n, but have leading order nαu and nαs respectively,
in which case ζ = αs − αu to leading order. It is a pos-
itive measure of the range of possible levels of predictive
understanding we may have in the system (ζ = 0 ⇒ we
should simulate; ζ > 0 ⇒ increasingly rapid predictions).
A related measure of understanding, which can be useful
if we wish to compare how different methods of predic-
tion, u(n), fare as we move around the space of relatively
simple systems, is given by:

Definition 4 Relative understanding, λ =
uopt(n)−u(n)

s(n)

Note that, at the phase change, uopt can have a discon-
tinuous gradient. Also, beyond this, uopt = s, and since
u ≥ uopt, we have that λ ≤ 0. So in an emergent system,
our understanding can be at best zero. Our astonish-
ment at the fact that we cannot seem to predict emergent
properties, stems not from any failure to understand, but
from an inherent property of the system, brought about
by the accumulation of interactions. A small reassurance
at least.

Now we need no longer deal with any explicit dichotomy
between emergent and non-emergent phenomena. The
perceived lack of understanding in the former is really
just another way of describing the complexity of the map
between initial state and final phenomenon. In the sense
that a lack of knowledge of the initial conditions will usu-
ally cause increasingly poor predictions; this is analogous
to a discrete version of chaos.

This explains the apparent paradox of the rules giving
a succinct, complete description of the system, whilst still
revealing almost nothing about it. Of course any single
phenomenon may fall anywhere in the spectrum between
trivial prediction and interesting emergence.

Does this necessarily reduce our attempts to under-
stand emergent systems to ‘stamp-collecting’? (In the
sense that all we may do is catalogue the results of sim-
ulations). Section 4 discusses this issue, demonstrating
that there are profitable, interesting possibilities for the
study of complex systems.

3 The Roots of Emergence

Although I have reached the conclusion that we have no
useful predictive information, despite a possible ‘perfect’
understanding, I have not yet addressed the issue of the
root of emergence and the loss of information. Indeed,
can we justify that emergence truly exists?

Many complex systems have been shown to be capa-
ble of universal computation (e.g. CA with as few as
14 states). Therefore many questions about their infinite
time behaviour are formally undecidable. In the case of
finite size or time, what happens to analogues of these
undecidable propositions? I posit that they are emer-
gent — the computations retain their irreducibility (see
[16, 17, 15] for a heuristic discussion of irreducibility).
Therefore the root of emergence and the commensurate
loss of information lie in the foundations of decidability
and complexity in computation.

Note that these complex systems are often only univer-
sal for very particular, rare initial conditions. Following
[17], I would suggest that emergence is far more common
and occurs in systems which are not computationally uni-
versal.

Can we determine, for a given system, whether or not it
is emergent? This question seems rather more subtle, now
that we have reduced an apparent dichotomy to a con-
tinuous parameter range. The answer may be extremely
difficult to determine for systems near the transition.

3.1 Decidability of Emergence

Suppose we had an algorithm, which when applied to a
complex system could give us a definite answer of ‘Emer-
gent’ or ‘Non-emergent’.

For the case of cellular automata, Wolfram[14] has sug-
gested a classification into four classes of behaviour: ho-
mogeneous (Class I), periodic (Class II), chaotic (Class
III) and complex (Class IV). Whether a cellular automa-
ton is in class I, II or III has been shown[5, 12] to be
undecidable. It follows that the question of emergence in
infinite systems is undecidable, with a possible reduction
to NP-complete status for finite systems[8].

More heuristically, by considering the halting problem
for any complex system which is capable of universal com-
putation, we know that the best (only) means of predic-
tion in such a situation is to ‘run the program’ - i.e. per-
form the simulation. So all complex systems which fall
prey to such isomorphisms would seem to be emergent,
and the halting problem then analogises to tell us that,
in the general case, the question of whether a system is
emergent or not is an undecidable proposition.

The undecidability of emergence presents us with a par-
ticularly gnarly problem. For any such undecidable sys-
tem, we can either:

(i) Assume it is emergent, and use large amounts of
computational power for simulations. What do we do if
Enrico Fermi suddenly arrives, with his deep understand-
ing, and removes all mystery from the system. We have
wasted a huge amount of effort.

(ii) Assume the system is non-emergent, and try to find
its deep, hidden inner structure. All this effort could con-
ceivably be in vain.

This devil’s alternative becomes especially important
when the system under consideration is one that has been
designed by us as a cooperative attempt to solve a par-
ticular problem.

4 Studying Emergence

I previously defined the emergence ratio ξ. It is a func-
tion of the size of the system, n, together with some in-
herent level of emergence contained in the rules of inter-
action. It measures the relative efficiency of rule-based
‘understanding’ versus simulation-based ‘understanding’.
My results indicate that, in general, we cannot determine
this ratio. Some interesting questions arise dealing with
the behaviour of ξ with n. In very small systems we can
usually perform some form of an analysis, so u will be
smaller than s.



As systems become more emergent, and n increases, the
propagation of information through accumulated interac-
tion will blur the boundaries of any analysis we try and
perform. Trying to generalise in the initial-state space be-
comes more and more futile, until any previously useful u
outstrips s. We gradually approach the worst case – that
of being forced simply to classify points in the state-space
purely by exhaustive enumeration, with each individual
result being determined by a simulation. Generalisation
has vanished.

Before moving on to discuss possible approaches to
the study of emergent systems, it is important to point
out that many systems are not emergent, and therefore
amenable to some form of analysis. Such an analysis will
certainly not generalise to the emergent complex systems,
but is clearly an important and valuable contribution to
understanding the context of our investigations – the con-
tinuum quantified by the emergence ratio.

For example, it has been demonstrated that in certain
highly symmetric classes of one-dimensional cellular au-
tomata, the single cell at the bottom of a light-cone af-
ter n time-steps can be predicted more quickly than the
n(n− 1)/2 steps of a simulation:

Linear CA[10] have u ∼ n ⇒ ξ ' 2/n, ζ ' 1. Quasi-
linear CA with radius 1/2 [11] have u ∼ n

log 3
log 2 ⇒ ξ '

2/n0.41, ζ ' 0.41. The proof of the latter result is particu-
larly informative in the direct manner in which it exploits
the symmetry of, for example, the quaternion group.

4.1 Research inside Emergent Systems

I’d like to give an example to suggest that the fact that
a given system may lie far beyond the phase change does
not mean we should lose all hope in our traditional means
of understanding, explanation and prediction:

Consider an analogy with the game of chess. Current
computer chess programs use extremely sophisticated but
nevertheless brute-force approaches to ‘simulate’ the game
and make predictions. Human grand-masters use a won-
derfully subtle combination of pattern-matching, general-
isation, comparison and analogy-making with some look-
ahead to ‘understand’ the game and make their predic-
tions. The branching factor of simulations is so high that
humans are currently far superior at determining such
elusive concepts as positional advantage5. I would posit
that chess lies on the emergent side of the phase bound-
ary, so that solution by simulation is ultimately the best
approach. However, human expertise and understanding
seem to achieve an astonishing amount in the face of the
above information paradox.

This highlights the fact that my result only states we
can do no better than a simulation by using our under-
standing. A sufficiently sophisticated combination of ap-
proaches may be the brain’s best bet for prediction in
complex systems. The brain itself, of course, is an ex-
tremely complex system, which I would suggest lies far
beyond the phase change - this clearly has important ram-

5Especially if the usual time constraints are removed, as in postal
chess.

ifications for artificial intelligence6.
Let us now look at the direct study of emergence. There

are two alternative view-points from which we could ap-
proach emergent complex systems.

Firstly there is the possibility of performing a limited
characterisation on the space of emergent systems. Al-
though the boundaries of any such classification in com-
plex system space will be very imprecise, many important
systems may fall nicely into such a scheme.

Secondly, given that we know a particular system
evolves to a particular type of emergent state under some
interesting conditions (or perhaps under most conditions),
we may be interested in the behaviour of the system on
that emergent state.

1. By virtue of its emergent nature, the interesting,
coherent parts of its emergent states will usually
be composed of ever changing subsets of the actors
which comprise the complex system. Is the split be-
tween co-organised and apparently separated actors
ergodic? Perhaps we can apply statistical physics
techniques to some sub-system.

2. We would like to know the structural stability of the
emergent state under external perturbations.

3. The emergent state may exhibit interesting dynam-
ics, e.g. self-organised critical phenomena such as
power-law scaling in its structure or constituents.

4. How robust is the emergent state to changes in the
underlying rules (interaction stability)?

5. What happens if we allow the system itself to evolve
by modification of its own rules?

4.2 Self-Organised Criticality

Let us now look in more detail at just one of the above
options7:

Definition 5 A self-organised critical state is a dynamic
equilibrium, the frequency of disturbances from which obey
a power-law distribution with respect to their size, l:

f(l) = c/lk

⇒ log f = c′ − k log l

Where k > 1, c is a normalising constant, and these are
expectations in the large time limit.

Now, let the set of actors be X; the parameter under
investigation be ax

t for some x ∈ X at time t; and 〈, 〉 be
a metric on the parameter space.

Define the average:

āt
X =

∑
x∈X〈0, ax

t〉
|X|

6The traditional knowledge-based approaches to AI are based
completely in conceptual ideas and ‘understanding’. My results
suggest progress and success by the use of such methods will be
harder to achieve than by the use of agent-based and connectionist
approaches.

7for early discussion on some of these points, see [3, 2].



Then we say aX is in a critical state if:

P( lim
t→∞

〈ax
t, āt

X〉 = l) = cl−k

In order to calculate or approximate such a limit for
a system, we need to know the rules. In this case all
we need is a rule to give us each ax

t from some local
neighbourhood NX , at time t − 1. We formalise this as
follows:

ax
t = Rax

t−1({ay
t−1; y ∈ NX(x)})

Here, in full generality, R is dependent on all properties
of the previous state. For specific systems, the variation
in R may be less general, or even constant.

As an example, let us consider a one dimensional sys-
tem, with R constant in time, and a unit neighbourhood.

ax
t = Rax

t−1(ax−1
t−1, ax+1

t−1)
= R′(ax−1

t−1, ax
t−1, ax+1

t−1)

This is the update equation for a cellular automaton
(the derivation of the second line requires that the actors
are not uniquely identifiable). Thus CA will fit within this
framework, with many other systems, although perhaps
very few will satisfy the critical property. This is the kind
of phenomenon which is likely to be emergent for many
R.

Current research[6] dealing with one particular type of
rule R — describing the interactions between predictive
agents in an artificial economy — has demonstrated the
existence of robust self-organised dynamic equilibria. The
equilibria are found in the space defined by a metric which
isolates the complexity of the predictive algorithms used
by the agents. Simulations have shown this is a critical
state, with power-law scaling of adaptive changes to the
predictive models. Such results will be presented in a
forthcoming paper of a less philosophical nature.

5 Conclusion

I have given a definition for ‘emergence’, based upon a
notion of predictive complexity. Emergence implies com-
putational irreducibility - which can be seen to be the fi-
nite analogue of formal undecidability. Hence, the strange
lack of understanding in emergent systems has its roots in
complexity theory, from which it would seem that emer-
gence itself is an undecidable proposition.

I conclude that not only do emergent systems exist,
but also that they match very closely our working def-
inition of the term. Simulation is an optimal means of
determining the outcome of such systems, and is thus
an important means of investigation. Simulations can be
coupled with any of a number of different analysis meth-
ods on the emergent state. Together they are suitable for
carrying out very interesting, real science in emergent or
near-emergent systems, and should lead to explanations of
some of the many thought-provoking emergent phenom-
ena we observe. I have elaborated on just one approach,

of current personal interest, to reveal the application of
these ideas to critical phenomena.

To summarise, my results suggest the best approach
to take in studying emergent complexity is a feedback
process of simulation and analysis of the actual emergent
phenomena. These results should go some way towards
legitimising the concept of a simulation as a real scientific
tool for the investigation of emergence.

Acknowledgments

The author would like to thank J. Chalcraft for much
insightful and entertaining conversation and criticism.

References

[1] N.A. Baas. Emergence, hierarchies, and hyperstruc-
tures. In C. Langton, editor, Artificial Life III, pages
515–537, 1993.

[2] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized
criticality. Physical Review A (General Physics),
38(1):364–74, 1988.

[3] P. Bak, Chao Tang, and K. Wiesenfeld. Self-
organized criticality: an explanation of 1/f noise.
Physical Review Letters, 59(4):381–4, 1987.

[4] P. Cariani. Emergence and artificial life. In C. Lang-
ton, editor, Artificial Life II, pages 775–797, 1992.

[5] K. Culik and S. Yu. Undecidability of CA classifica-
tion schemes. Complex Systems, 2:177, 1988.

[6] Vincent M. Darley and S. Kauffman. Natural ra-
tionality. In W. Brian Arthur, David Lane, and
Steven N. Durlauf, editors, The Economy as an
Evolving, Complex System II. Addison-Wesley, 1997.
Also available as Santa Fe Institute working paper
96-08-071.

[7] J.D. Farmer, S.A. Kauffman, and N.H. Packard.
Autocatalytic replication of polymers. Physica D,
22:50–67, 1986.
A model of the emergence of autocatalytic networks
using the concept of a reaction graph.

[8] F. Green. NP-complete problems in cellular au-
tomata. Complex Systems, 1:453, 1987.

[9] J. Koza. Genetic Programming. MIT Press, 1993.

[10] O. Martin, A.M. Odlyzko, and S. Wolfram. Algebraic
properties of cellular automata. Commun. Math.
Phys., 93:219–258, 1984.

[11] C. Moore. Personal communication, 1993.

[12] K. Sutner. Classifying circular cellular automata.
Physica D, 45:386–395, 1990.

[13] T. Toffoli and N. Margolus. Cellular Automata Ma-
chines. MIT Press, Cambridge, 1987.
An excellent book on the application of cellular au-
tomata to modeling physical systems.



[14] S. Wolfram. Stastical mechanics of cellular automata.
Rev. Modern Physics, 55:601–644, 1983.
Important paper largely responsible for the resurgence
of interest in cellular automata.

[15] S. Wolfram. Origins of randomness in physical sys-
tems. Physical Review Letters, 55(5), 1985.

[16] S. Wolfram. Twenty problems in the theory of cellu-
lar automata. Physica Scripta, T9:170–183, 1985.

[17] S. Wolfram. Undecidability and intractability in the-
oretical physics. Physical Review Letters, 54(8), 1985.


