Introduction to Python

Adapted with gratitute from Brad Dayley’s “Python
Phrasebook” and CSE 391 slides at UPenn

\What is Python?

Powerful open source
scripting language.

Developed by Guido van
Rossum in early 90s.

Named after Monty Python.

Maintained at:

www.python.org

DOC

TOR FUN

wwwww

00 David Farley, d-farley@metalab.unc.edu

nc.edu/Dave/drfun html

This cartoon is made available

on the Internet

ssed herein are solely the

Why Python?

Portability

— Interpreters available on almost any platform.
Integration

— Can contain C/C++ code. Can run on Java.

Ease of use

— Clear and readable syntax. Intuitive data types.
Power

— Powerful extensions added all the time.

Dynamic

— Flexible language that supports creative solutions.

Open Source
— Free to use and distribute.

\Who Uses Python?

e Examples:
— Google
— Industrial Light and Magic
— United Space Alliance
— Disney (Panda 3D)
— CCP Games (EVE Online)
— Sid Meier (Civilization V)
— etc.

Invoking The Interpreter

e |f the python executable (python.exe on PCs) is in
your execution path, just type:
python
in any shell to invoke the interpreter in interactive
mode.

e The command:
>>> execfile(“scriptfile.py”)
will interpret the contents of this script.

e Quicker to invoke the interpreter with a script
parameter:
python scriptfile.py

Types

e Built-in object types. Type guessed at
assignment time. Can determine later
whether object is of a specific type:

>>> s = “A Simple String”

>>> print isinstance(s, basestring)
True

>>> print isinstance(s, dict)

False

>>>

Types

e Built-in object types:

— General object, type

— Null Types.NoneType

— Numbers bool, int, long, complex
— Sets set, frozenset

— Sequences str, list, tuple, xrange
— Maps dict
— Files file

— Callable types.FunctionType, types.MethodType

Types

Numbers

— bool is either True or False
>>> X = True

— int is 32 bit whole numbers while long is only limited

by machine memory.
>>>x =4

— float is 64 bit floating-point numbers.
>>>x=4.3

— complex is a pair of floats.
>>> x = 1.5+0.5]j
>>> print x.real, x.imag
1.5 0.5

Types

Sets
— An unordered collection of unique items.
— Mutable sets (set) can be modified.

— Immutable sets (frozenset) cannot be changed
after creation!

Types

Sequences
— Ordered items, indexed by integers.
— Can be made up of almost any Python object.

— strings and tuples are immutable.
>>> mystring = “hello”
>>> mytuple= (1, mystring, 3.5)

— lists are mutable.
>>> mylist = [1, "hello”, 3.5]
>>> mylist[1] = “bye”

Types

e Sequences: Indexing

— Typical array notation starting with 0, also
negative indexing from right starting with -1.

>>> mystring[4]

(7

0
>>> mystring[-1]

(7

0]

Types

* Sequences: Slicing

— Returning a copy with a subset of original
sequence. Start copying at first index and stop
copying before second index.

>>> mystring[2:4]
IIII

>>> mytuple[0:-1]
(1, ‘hello’)

Types

* Maps (i.e. Dictionary, Hash tables, Associative Arrays)

— A collection of key objects that index the second
collection of value objects.

— The key object must be of an immutable type.
— The value object can be almost any Python object.

>>> trans = {‘epli“:‘apple’, ‘appelsina‘:‘orange’}
>>> trans[‘epli’]
‘apple’

Types

* Files
— Object representing an open file.
— Used to read and write filesystem data.

e Callables

— Objects of this type can be called as a function.

— For example built-in functions, user-defined
functions and method instances.

Types

e Modules

— Modules of code loaded with the import
statement.

— All objects within a module can be accessed using
the dot syntax.

>>> import math
>>> print math.pi
3.14159265359

oyntax

e Code indentation

— There are no { } or begin/end markers for code
blocks.

— Blocks of code are denoted by line indentation.

— Number of spaces may vary across blocks, but

never within a block!
if True:
print “Good answer:”
print “True”

else:
print “Bad answer:”
print “Fale”

oyntax

e Multiline Statements
— Statements end with a new line.

— Can use \ to denote the line continues.
Sum=x+4+\
56+y

— Statements within [], {} or () don’t need this.
List = [‘apple’, ‘orange’,
‘lemon’, ‘pear’]

oyntax

e Quotation

“wrn)

— Single (), double (“), triple (" or
— Have to match at each end.

— Triple quotes can span multiple lines.
s = ‘hello’
s = “hello again ‘sam’!”
s = “"”hello! What | meant to say was
how are you doing?”””

oyntax

e Comments
— # starts a comment to the end of the line

— “Documentation strings” can be included as the
first line of any new class or function definition

def foo(x, y):
“’’Does foo to both x and y
blah blah blah ”””
Now the code starts
print x, y

oyntax

* Formatting strings

— Match a list of objects to predefined format symbols
within a string.

>>> X = [“Sam”, 1]
>>> print “%s is number %03d%s” % (x[0], x[1], “!”)
Sam is number 001!

oyntax

* Flow Control
— if expression: block
— while expression: block
— for item in sequence: block
— else and elif added to any of these.

— break exits a loop (skips an else), continue jumps
to next iteration.

Jbjects, Classes and Functions

e Objects

— Every piece of data stored and used in the Python
Language is an object.

— Every object has
 |dentity: points to memory location
» Type: describes object representation / interpretation

e Value: the data
>>>x =3
>>> print id(x), type(x), x
10115944 <type ‘int’> 3

Jbjects, Classes and Functions

e Objects cont.

— Can also have
e Attributes: Other values associated with the object.
e Methods: Callable functions associated with the object.

 Those are accessed with the dot-notation.
>>> class foo(object):
def p(self):
print self.num
>>>f = foo()
>>> f.num =3
>>> f.p()
3

Jbjects, Classes and Functions

e Classes
— Basically a collection of attributes and methods.

— “class name(object): block” defines a new class
that derives from object.

— All code contained in the block will be executed
when the class is instantiated.

—The “ init_ ()” function (method) will also be
executed if defined inside the block (constructor).

Jbjects, Classes and Functions

e C(Classes cont.

class testClass(object):

print “Defining a new testClass object”

number =5

def __init__ (self, string):
self.string = string

def print(self):
print “Number=%d” % self.number
print “String=%s" % self.string

tc = testClass(“Five”) OUTPUT:

tc.print() Defining a new testClass object
tc.number = 10 Number =5

tc.string = “Ten” String = Five

tc_print() Number = 10

String = Ten

Jbjects, Classes and Functions

* Functions
— Functions are objects in Python.

— “def functionname(parameters): block” defines a
new function.

— Parameters are not type checked!
— Parameters can be passed in a number of ways.

bjects, Classes and Functions

e Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

) (/L

>>> fun(“Teag”, “San Diego”)
Teag/San Diego/2006

Jbjects, Classes and Functions

e Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> fun(location="“San Diego”, name=“Teag”,
year=2004)
Teag/San Diego/2004

Jbjects, Classes and Functions

e Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> fun(“Teag”, year=2004,
location=“San Diego”)
Teag/San Diego/2004

bjects, Classes and Functions

e Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> tuple = (“Teag”,”San Diego”,2004)
>>> fun(*tuple)
Teag/San Diego/2004

bjects, Classes and Functions

e Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> dictionary = {name="Teag”,
location="San Diego”, year=2004}
>>> fun(**dictionary)
Teag/San Diego/2004

Jbjects, Classes and Functions

e Functions Cont.

— Values can be returned from functions using the
return statement.

— If a function has no return statement, a None
object is returned.

>>> def square(x):

return x*x
>>> print square(3)
S

