
Shaders and Visual Realism

Hannes Högni Vilhjálmsson
hannes@ru.is

Very Brief History

• The state of the art in computer graphics
was in offline rendering in the 80s and early
90s.

• A sophisticated and flexible rendering pipeline
was being built in software – geared towards
ultimate realism.

The Genesis Effect from Star Trek II - The Wrath of Khan © Pixar

Very Brief History

• The development was mostly driven by
research and commercialization of CGI
(Computer Generated Imagery in films and
commercials).

• This lead to special shading languages being
invented, of which the RenderMan language
has been the most successful (used by Pixar).

“Toy Story” - Pixar, 1995 – Using the Pixar RenderMan Language
(Programmable Photorealistic Off-line Rendering)

Photorealistic rendering in Pixie, an Open Source RenderMan

Very Brief History

• When OpenGL 1.0 was announced in 1992,
by SGI, DEC, IBM, Intel and Microsoft, they
decided to keep the rendering pipeline fixed
function and NOT programmable.

• They said: “..programmability would conflict
with keeping the API close to the hardware
and reduce optimum performance.”

Very Brief History

• OpenGL nevertheless took off, and showed
many ground breaking applications, including
games (e.g. Quake).

• Although OpenGL was fixed
function, it was open to
extensions.

• Around this time, new
powerful graphics
hardware was popping up
on regular PCs. 1996 – Quake by id

VISUAL REALISM IN GAMES
Part I

Codemasters: Dirt 2

Codemasters: Dirt 2

Fallout 3

Fallout 3

“Bioshock”

“Unreal Engine 3.0”

“Alan Wake”

“Alan Wake”

“Alan Wake”

“Alan Wake”

“Unreal Tournament 2007”

“Crysis”

“Test Drive Unlimited”

“Test Drive Unlimited”

Most of the following images were taken from
“Shaders for Game Programmers and Artists” by Sebastien St-Laurent,
Copyright 2004 by Course Technology

SHADER PROGRAMMING
Part II

3D Object (Shaded and colored)

Polygons (Triangles)

Vertices

Vertex Transformation

(x1,y1,z1)

(0,0,0)

Translating and Scaling

1 0 0 Tz
0 1 0 Tx
0 0 1 Ty
0 0 0 1

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

Rotating

Vertex Transformation

Object vertices in Object coordinates:
Tobjlocal

World Coordinates

Object vertices in World Space coordinates:
Tobjworld ● Tobjlocal

Camera Coordinates

Object vertices in Camera Space coordinates:
Tcamworld

-1 ● Tobjworld ● Tobjlocal

Face Culling and Clipping

Clipped if outside frustum

Culled if facing away

View Projection

Object vertices in Screen Space coordinates:
Tviewproj ● Tcamworld

-1 ● Tobjworld ● Tobjlocal

Rasterization

fragment

Fragment Coloring and Blending

Coloring of fragments based on interpolated information from nearby vertices
(e.g. Vertex colors, Vertex UV coordinates, Vertex Normals)

Alpha Blending and Depth Tests

Z-buffer keeps track of the front most fragments

Pixels (what we see on the screen)

PC 3D Rendering in Hardware

Year Graphics Card Milestone

1987 IBM VGA Provides a pixel frame buffer that the
CPU has to fill

1996 3dfx Vodoo Rasterizes and textures
pre-transformed vertices (triangles)

1999 nVidia GeForce 256 Applies both transformation and
lighting to vertices (T&L) – fixed pipeline

2001 nVidia GeForce 3 Configurable pixel shader and
programmable vertex shader

2003 nVidia GeForce FX Fully programmable pixel and vertex
shaders

Data flow

// Simplest Vertex Shader
// input vertex
struct VertIn {

float4 pos : POSITION;
float4 color : COLOR0;

};
// output vertex
struct VertOut {

float4 pos : POSITION;
float4 color : COLOR0;

};
// vertex shader main entry
VertOut main(VertIn IN, uniform float4x4 modelViewProj) {

VertOut OUT;
OUT.pos = mul(modelViewProj, IN.pos); // calculate output coords
OUT.color = IN.color; // copy input color to output
return OUT;

}

Vertex Shader

// Small Pixel Shader (Grayscale Converter)
// input pixel
struct PixIn {

float3 color : COLOR0;
float3 texcoord : TEXCOORD0;

};
// output pixel
struct PixOut {

float3 color : COLOR0;
};
// vertex shader main entry
PixOut main(PixIn IN, uniform sampler2D texture : TEXUNIT0) {

PixOut OUT;
float3 color = tex2D(texture, IN.texcoord).rgb;
OUT.color = dot(color,float3(0.299,0.587,0.184)).xxx
return OUT;

}

Pixel Shader

Some Categories of Shaders

• Vertex Skinning

• Vertex Displacement Mapping

• Screen Effects

• Light and Surface Models

• Non-photorealistic Rendering

Vertex Skinning

• The vertices on a surface, like the human
body, get moved around based on an
underlying skeletal structure. An additional
deformation may also simulate the dynamic
shape of a muscle.

Vertex Displacement

• Vertices can be displaced, for example
vertically, based on an algorithm or an
existing height map.

Sceen Effects

• Pixel shader renders to a temporary texture
that it then processes with filters before
returning the color values.

Sceen Effects: Glow

Sceen Effects: Depth of Field

Sceen Effects: Distortion

Sceen Effects: High Dynamic Range + Bloom

Half-life 2 (Valve) – HDR on Right

Lighting Models

• Shaders calculate new color values by
applying various lighting models, involving
parameters such as surface normals (N),
light angle (L), reflected light angle (R) and
view angle (V).

N

V
L

R

Lighting Models: Per-Pixel Lighting

Lighting Models: Normal Mapping

Lighting Models: Environment Reflection

Lighting Models: Shadows

Non-Photorealistic Rendering

• Light models do not have to imitate the “real
world”, but can instead assign color values
according to imaginary worlds, such as the
world of cartoons or oil paintings.

• In fact, any of the aforementioned effects
could be taken into the realm of the
imaginary or expressionistic art.

Non-Photorealistic Rendering

Non-Photorealistic Rendering

