Action

Part I: Cooper & Reinmann

MAKING INTERFACES INVISIBLE

Flow and the Interface

Flow (Csikszentmihalyi)

- When people are able to concentrate wholeheartedly on an activity, they lose awareness of peripheral problems and distractions.
- Software interaction should promote and enhance flow, rather than potentially breaking it and including flow-disturbing behavior.
- The interface is the greatest threat!

Trouble with Interface

- An interface is
 - ...an artifact, not directly related to the goals of the user.
- The best interface is
 - ...no interface at all!
- Interfaces must be
 - ...at the service of the user,
 providing what is needed at every turn.

Making Interfaces Invisible

Four important guidelines:

- 1. Follow mental models
- 2. Direct, don't discuss.
- 3. Keep tools close at hand.
- 4. Provide modeless feedback.

1. Follow mental models

- The mind looks for a pattern of cause and effect to understand the machine's behavior.
- Provide what is most likely the users will look for first, based their background.
- Yet, don't forget to improve on "mechanical-age" representations to move things forward.

2. Direct, don't discuss

- The ideal interaction is not a dialog it's more like using a tool such as a hammer.
- Direct feedback is expected from the tool and the environment – not a dialog box.
- Direct manipulation idioms provide better and more flow-inducing interfaces.

3. Keep tools close at hand

- Most programs are too complex for one mode of direct manipulation to cover all features.
- Tools (effectors, manipulators) offer different modes.
- Make tool manipulation and switching easy to prevent flow disturbance (provide shortcuts).
- Users should not have to divert attention from application to find a tool.

4. Modeless feedback

- Presented information and feedback should be built into the main interface and shouldn't stop the normal flow of activities.
- The heads-up display (HUD) is typically used for this purpose.

Tactical Pashto by Alelo Inc.

Part II: Brenda Laurel

COMPUTER AS THEATRE

Dramatic Techniques

- Dramatic Theory
 - Used to design interesting, engaging and satisfying human-computer activities.

From "Ívanov" in Þjóðleikhúsið, 2008

Drama vs. Narrative

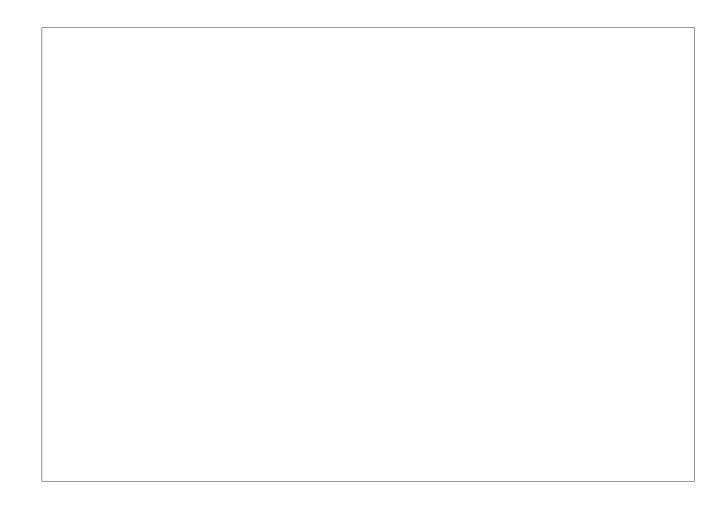
- Sometimes
 emphasis on
 narrative, but...
- Human-Compupter
 Activities are more
 like drama than
 narrative.

Narrative	Drama
Description [storytelling]	Action (Enactment)
Detail [expansion]	Intensity (Intensification)
Thematic Links [episodic]	Causal Links (Unity of action)

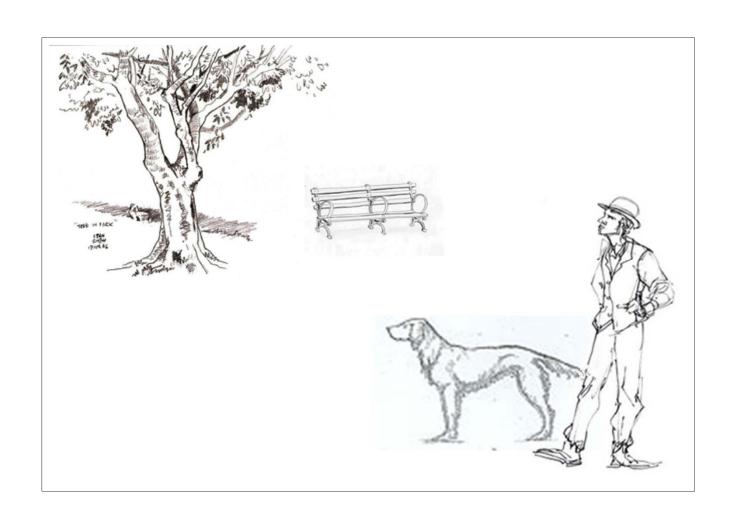
Drama and Time

- "...I'd design games that were meant to be played in 4-5 hours. The games would be of the same scope that I currently design, I'd just remove the silly time-wasting puzzles and take the player for an intense ride. The experience they would leave with would be much more entertaining and a lot less frustrating." (Gilbert, "Monkey Island", 1989)
- Drama imposes time limits
 - So does an interactive system.

Part III: Brenda Laurel


CONSTRAINTS

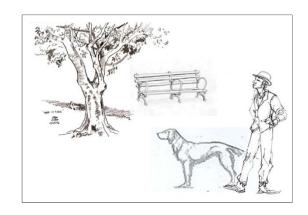
Interaction Constraints


- Two kinds of imposed constraints:
 - "Real world" or hardware related.
 - "Mimetic world" or software related.

Create a new story...

Create a new story...

Creativity and Constraints


No limits

 Can produce a sense of powerlessness or even complete paralysis of imagination.

Limitations

 Paradoxically increase imaginative power by reducing open possibilities.

Creativity and Constraints

Closed Mimetic* Worlds

- Provide a creative security net.
- People respect this.
- Increased potential for effective agency where causal relations are clear and not left open.

Eve-Online by CCP Games

Giving Constraints

- How should mimetic constraints be given?
- Explicitly
 - Undisguised constraint
 - Directly available (e.g. menus)
 - Can be used before action.
- Implicitly
 - Disguised constraint
 - Simply inferred from behavior of system (e.g. failing)
 - Can be used during action.

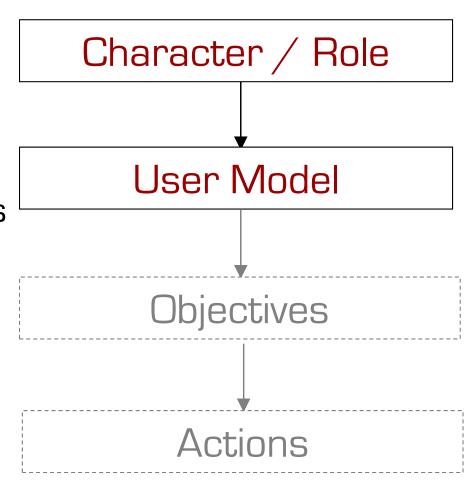
The Power of Context

- Constraints should limit...
 - ...not what we can do,
 - ...but what we are likely to think of doing.
- Context
 - Is the most effective way to do this.

The Power of Context

- Mimetic Context
 - Can provide a way to make constraints appear to be within the scope of the activity.

In-Story Tutorial in Star-Trek Elite Forces by Raven Software


The Power of Context

- Character as Mimetic Context
 - A role template giving rise to action.
 - Implicitly constrains choices.
 - Inspires creativity in fulfilling that role.

User as Character

- Think of the user of your environment as someone taking a specific role.
- A user model maps roles to specific interaction objectives.
- Support these objectives with the available actions.

Using Plan Recognition

Discover

- What action is being performed (observation).
- What process has started (inference).
- What objectives are being pursued (user model).

Intervene

- To help user fulfil their role.
- To guide user to a different role.

References

- Cooper, A., Reimann, R., Reimann, R. M., and Dubberly, H. 2003 About Face 2.0: the Essentials of Interaction Design. John Wiley & Sons, Inc.
- Laurel, B. 1993 Computers As Theatre. 2nd.
 Addison-Wesley Longman Publishing Co., Inc.