Shaders and Visual Realism

Very Brief History

- The state of the art in computer graphics was in offline rendering in the 80s and early 90s.
- A sophisticated and flexible rendering pipeline was being built in software – geared towards ultimate realism.

Very Brief History

- The development was mostly driven by research and commercialization of CGI (Computer Generated Imagery in films and commercials).
- This lead to special shading languages being invented, of which the RenderMan language has been the most successful (used by Pixar).

Very Brief History

- When OpenGL 1.0 was announced in 1992, by SGI, DEC, IBM, Intel and Microsoft, they decided to keep the rendering pipeline fixed function and NOT programmable.
- They said: "..programmability would conflict with keeping the API close to the hardware and reduce optimum performance."

Very Brief History

- OpenGL nevertheless took off, and showed many ground breaking applications, including games (e.g. Quake).
- Although OpenGL was fixed function, it was open to extensions.
- Around this time, new powerful graphics hardware was popping up on regular PCs.

1996 – Quake by id

Part I

VISUAL REALISM IN GAMES

Some Categories of Shaders

- Vertex Skinning
- Vertex Displacement Mapping
- Screen Effects
- Light and Surface Models
- Non-photorealistic Rendering

Vertex Skinning

• The vertices on a surface, like the human body, get moved around based on an underlying skeletal structure. An additional deformation may also simulate the dynamic shape of a muscle.

Vertex Displacement

• Vertices can be displaced, for example vertically, based on an algorithm or an existing height map.

Sceen Effects

• Pixel shader renders to a temporary texture that it then processes with filters before returning the color values.

Lighting Models

 Shaders calculate new color values by applying various lighting models, involving parameters such as surface normals (N), light angle (L), reflected light angle (R) and view angle (V).

Non-Photorealistic Rendering

- Light models do not have to imitate the "real world", but can instead assign color values according to imaginary worlds, such as the world of cartoons or oil paintings.
- In fact, any of the aforementioned effects could be taken into the realm of the imaginary or expressionistic art.

