Introduction to Python

Adapted with gratitute from Brad Dayley’s “Python
Phrasebook” and CSE 391 slides at UPenn

9/15/2010

What is Python?

Powerful open source pRcTon FuN
scripting language.
Developed by Guido van
Rossum in early 90s.

Named after Monty Python.
Maintained at:

www.python.org

Why Python?

Portability

— Interpreters available on almost any platform.
Integration

— Can contain C/C++ code. Can run on Java.
Ease of use

— Clear and readable syntax. Intuitive data types.
Power

— Powerful extensions added all the time.
Dynamic

— Flexible language that supports creative solutions.
Open Source

— Free to use and distribute.

9/15/2010

Who Uses Python?

e Examples:

— Google

— Industrial Light and Magic
— United Space Alliance

— Disney (Panda 3D)

— CCP Games (EVE Online)
— Sid Meier (Civilization IV)
—etc.

Invoking The Interpreter

* If the python executable (python.exe on PCs) is in
your execution path, just type:
python
in any shell to invoke the interpreter in interactive
mode.
* The command:
>>> execfile(“scriptfile.py”)
will interpret the contents of this script.
e Quicker to invoke the interpreter with a script
parameter:
python scriptfile.py

Types

¢ Built-in object types. Type guessed at
assignment time. Can determine later
whether object is of a specific type:
>>>s = “A Simple String”
>>> print isinstance(s, basestring)
True
>>> print isinstance(s, dict)
False
>>>

9/15/2010

Types

e Built-in object types:
— General object, type

— Null Types.NoneType
— Numbers bool, int, long, complex

— Sets set, frozenset
—Sequences str, list, tuple, xrange

— Maps dict
— Files file
— Callable types.FunctionType, types.MethodType

Types

e Numbers
— bool is either True or False
>>>x =True
— intis 32 bit whole numbers while long is only limited
by machine memory.
>>>x=4

— float is 64 bit floating-point numbers.
>>>x=4.3
— complex is a pair of floats.
>>>x =1.5+0.5j
>>> print x.real, x.imag
1.5 0.5

Types

* Sets
— An unordered collection of unique items.

— Mutable sets (set) can be modified.

— Immutable sets (frozenset) cannot be changed
after creation!

Types

* Sequences
— Ordered items, indexed by integers.
— Can be made up of almost any Python object.

— strings and tuples are immutable.
>>> mystring = “hello”
>>> mytuple= (1, mystring, 3.5)
— lists are mutable.
>>> mylist = [1, “hello”, 3.5]
>>> mylist[1] = “bye”

9/15/2010

Types

e Sequences: Indexing

— Typical array notation starting with 0, also
negative indexing from right starting with -1.

>>> mystring[4]

“

o
>>> mystring[-1]

“

(o)

Types

¢ Sequences: Slicing
— Returning a copy with a subset of original
sequence. Start copying at first index and stop
copying before second index.

>>> mystring[2:4]
q

>>> mytuple[0:-1]
(1, ‘hello’)

Types

Maps (i.e. Dictionary, Hash tables, Associative Arrays)

— A collection of key objects that index the second
collection of value objects.

— The key object must be of an immutable type.

>>>trans = {‘epli“:‘apple’, ‘appelsina‘:‘orange‘}
>>> trans[‘epli’]

‘apple’

9/15/2010

— The value object can be almost any Python object.

Types

* Files
— Object representing an open file.

— Used to read and write filesystem data.
* Callables

— Objects of this type can be called as a function.

— For example built-in functions, user-defined
functions and method instances.

Types

¢ Modules

— Modules of code loaded with the import
statement.

— All objects within a module can be accessed using
the dot syntax.

>>> import math
>>> print math.pi
3.14159265359

Syntax

¢ Code indentation

—There are no { } or begin/end markers for code
blocks.

— Blocks of code are denoted by line indentation

— Number of spaces may vary across blocks, but
never within a block!
if True:
print “Good answer:”
print “True”
else:
print “Bad answer:”
print “Fale”

9/15/2010

Syntax

Multiline Statements
— Statements end with a new line.

— Can use \ to denote the line continues.
Sum=x+4+\

56+y
— Statements within [], {} or () don’t need this.
List = [‘apple’, ‘orange’,
‘lemon’, ‘pear’]

Syntax

Quotation

—Single (), double (“), triple (“’ or “”).
— Have to match at each end.

— Triple quotes can span multiple lines.

s = ‘hello’
s = “hello again ‘sam’!”
S=

“"hello! What | meant to say was
how are you doing?”””

Syntax

e Comments

— # starts a comment to the end of the line

— “Documentation strings” can be included as the
first line of any new class or function definition

def foo(x, y):
“’"Does foo to both xand y
blah blah blah """
Now the code starts
print x, y

9/15/2010

Syntax

e Formatting strings

— Match a list of objects to predefined format symbols
within a string.

>>> X = [“Sam”, 1]

>>> print “%s is number %03d%s” % (x[0], x[1], “!”)
Sam is number 001!

Syntax

Flow Control

— if expression: block

— while expression: block

— for item in sequence: block

— else and elif added to any of these.

— break exits a loop (skips an else), continue jumps
to next iteration.

9/15/2010

Objects, Classes and Functions

¢ Objects
— Every piece of data stored and used in the Python
Language is an object.

— Every object has
« Identity: points to memory location
« Type: describes object representation / interpretation
* Value: the data
>>>x=3
>>> print id(x), type(x), x
10115944 <type ‘int’>3

Objects, Classes and Functions

¢ Objects cont.

— Can also have

* Attributes: Other values associated with the object.
* Methods: Callable functions associated with the object.
* Those are accessed with the dot-notation.

>>> class foo(object):

def p(self):
print self.num

>>> f =foo()

>>>f.num=3

>>> f.p()

3

Objects, Classes and Functions

* Classes
— Basically a collection of attributes and methods.
— “class name(object): block” defines a new class
that derives from object.
— All code contained in the block will be executed
when the class is instantiated.

—The “__init__()” function (method) will also be
executed if defined inside the block (constructor).

9/15/2010

Objects, Classes and Functions

* Classes cont.

class testClass(object):

print “Defining a new testClass object”

number =5

def __init__(self, string):
self.string = string

def print(self):
print “Number=%d” % self.number
print “String=%s" % self.string

tc = testClass(“Five”) OUTPUT:
te.print() Defining a new testClass object
tc.number = 10 Number =5
tc.string = “Ten” String = Five
te.print() Number =10
String = Ten

Objects, Classes and Functions

¢ Functions

— Functions are objects in Python.

— “def functionname(parameters): block” defines a
new function.

— Parameters are not type checked!

— Parameters can be passed in a number of ways.

Objects, Classes and Functions

¢ Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> fun(“Teag”, “San Diego”)
Teag/San Diego/2006

Objects, Classes and Functions

¢ Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> fun(location="San Diego”, name="Teag”,
year=2004)
Teag/San Diego/2004

9/15/2010

Objects, Classes and Functions

¢ Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> fun(“Teag”, year=2004,
location=“San Diego”)
Teag/San Diego/2004

Objects, Classes and Functions

¢ Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> tuple = (“Teag”,”San Diego”,2004)
>>> fun(*tuple)
Teag/San Diego/2004

10

Objects, Classes and Functions

¢ Functions Cont.

def fun(name, location, year=2006):
print “%s/%s/%d” %(name,location,year)

>>> dictionary = {name="Teag”,
location="San Diego”, year=2004}
>>> fun(**dictionary)
Teag/San Diego/2004

9/15/2010

Objects, Classes and Functions

¢ Functions Cont.

— Values can be returned from functions using the
return statement.

— If a function has no return statement, a None
object is returned.

>>> def square(x):

return x*x
>>> print square(3)
9

11

