
Natural Language
Processing

Various Text Processing Tools

2

Linux Tools

• Linux contains various command line tools
for text processing, e.g.:

� grep

� sed

� awk

� sort

� uniq

� head, tail

3

What about Windows?

• In Windows you can install Cygwin
http://www.cygwin.com/

� Cygwin is a collection of tools which provide a
Linux look and feel environment for Windows.

4

grep

• A utility for searching plain-text data sets for
lines matching a regular expression

• grep = Global Regular Expression Print

• Example:

• grep 'ab*c' myFile

� Prints all the lines from the file myFile containing the
strings ac, abc, abbc, abbbc, etc.

• grep tutorial: http://www.uccs.edu/~ahitchco/grep/

5

sed

• A utility that parses and transforms text.

• sed = Stream Editor

• Great for “search and replace”

• Example:
• sed 's/oldstuff/newstuff/g' input > output

� Substitutes the string (regex) oldstuff with newstuff (globally)
in all lines in the file input and writes the result to file output

• sed tutorial: http://www.grymoire.com/Unix/Sed.html

6

awk

• A scripting programming language typically
used as a data extraction and reporting tool.

• awk= Alfred Aho, Peter Weinberger, Brian
Kernighan

• "AWK is a language for processing text files. A file is treated as a sequence of
records, and by default each line is a record. Each line is broken up into a
sequence of fields, so we can think of the first word in a line as the first field,
the second word as the second field, and so on. An AWK program is of a
sequence of pattern-action statements. AWK reads the input a line at a time. A
line is scanned for each pattern in the program, and for each pattern that
matches, the associated action is executed." Alfred V. Aho

7

awk

• awk tutorial:
http://www.grymoire.com/Unix/Awk.html

• Example:
• awk '{print $1"\t"$3}' input > output

• Prints to file output the first field (column) followed by a tab character,
followed by the third field from the file input

8

sort and uniq

• Let us assume file input contains one token
per line

• Counting frequencies:
• sort input | uniq -c | sort -nr > output

� The result is a unigram model

9

head and tail

• head -3 < input

� Returns the first three lines

• tail -2 < input

� Returns the last two lines

• tail --lines=+2 < input

� Skips the first line

10

Building a bigram model

• Let us assume that the file eng.tok contains one
token per line.

• tail --lines=+2 < eng.tok > eng2.tok

• paste eng.tok eng2.tok > eng.bigrams

• sort eng.bigrams | uniq -c | sort -nr >

eng.freq

11

Lexical Analyser

• A lexical analyzer (í. lesgreinir) is a program which
breaks a text into tokens (lexemes).

• A program which generates a lexical analyser is
called a lexical analyser generator (í.
lesgreinissmiður)

• Examples: Lex/Flex/JFlex
� The user defines a set of regular expression patterns.

� The program generates a finite-state automata.

� The automata are used to recognise tokens.

12

JFlex (http://jflex.de/)

• A tool which generates a lexical analyser given a set
of regular expressions.
� Generates Java code, which contains a finite-state
automaton (state transition table).

• Input: JFlex source program (e.g. Simple.flex)

• Output: Java code (e.g. Simple.java)

• The Java code is compiled and exectuted
� javac Simple.java (the output is Simple.class)

� java Simple <textfile>

13

JFlex

• To make JFlex run in Windows:
• Set c\:jflex\bin into path.

• Change the file c:\jflex\bin\jflex.bat to:

set JFLEX_HOME=“C:\JFLEX”

REM for JDK 1.2

java -Xmx128m -jar %JFLEX_HOME%\lib\JFlex.jar

14

JFlex example

%% A finite-state automata recognising (a|b)*abb

%public

%class Simple

%standalone

%unicode

%{

String str = "Found: ";

%}

Pattern = (a|b)*abb

%%

{Pattern} { System.out.println(str + " " + yytext());}

. { ;}

15

JFlex example
%% A good tokeniser for English?

%public

%class EngGood

%standalone

%unicode

%{

%}

WhiteSpace = [\t\f\n]

Lower = [a-z]

Upper = [A-Z]

EngChar = {Upper}|{Lower}

EngWord = {EngChar}+

%%

{WhiteSpace} {;}

{EngWord} { System.out.println(yytext());}

. { System.out.println(yytext());}

