
Speech and Language
Processing

Regular Expresssions and
Automata

Chapter 2 of SLP

8/22/2013 Speech and Language Processing - Jurafsky and Martin 2

Regular Expressions and Text
Searching

• Everybody does it

� emacs, vi, grep, sed, Perl, Python, Ruby, Java
etc.

• Regular expressions are a compact textual
representation of a set of strings
representing a language.

• Example web page:

� http://rubular.com/

8/22/2013 Speech and Language Processing - Jurafsky and Martin 3

Example

• Regular expression search requires a
pattern that we want to search for and a
corpus of text to search through.

• Find all the instances of the word “the” in
a text.
� /the/

� /[tT]he/

� /\b[tT]he\b/

8/22/2013 Speech and Language Processing - Jurafsky and Martin 4

Errors

• The process we just went through was
based on fixing two kinds of errors

�Matching strings that we should not have
matched (there, then, other)

� False positives (Type I)

� Not matching things that we should have
matched (The)

� False negatives (Type II)

8/22/2013 Speech and Language Processing - Jurafsky and Martin 5

Errors

• We’ll be telling the same story for many
tasks, all semester. Reducing the error rate
for an application often involves two
antagonistic efforts:

� Increasing accuracy, or precision, (minimizing
false positives)

� Increasing coverage, or recall, (minimizing
false negatives).

8/22/2013 Speech and Language Processing - Jurafsky and Martin 6

Range, negation and
optionality

• /[A-Z]/ an upper case letter

• /[a-z]/ a lower case letter

• /[0-9]/ a single digit

• /[^A-Z]/ not an upper case letter

• /[^\.]/ not a period

• /colou?r/ color or colour

8/22/2013 Speech and Language Processing - Jurafsky and Martin 7

Kleene * and +

• /s+/ one or more occurrences of s

• /[0-9]+/ a sequence of digits

• /s*/ zero or more occurrences of s

• /[0-9][0-9]*/ a sequence of digits

8/22/2013 Speech and Language Processing - Jurafsky and Martin 8

Anchors

• Special characters that anchor

regular expressions to

particular places in a string

• /^/ matches the start of a line

• /$/ matches the end of a line

• /^T/ matches what?

• /\.$/ matches what?

8/22/2013 Speech and Language Processing - Jurafsky and Martin 9

Disjunction and Grouping

• Disjunction operator

� /cat|dog/ matches cat or dog

• Grouping

� /gupp(y|ies)/

� Matches guppy or guppies

8/22/2013 Speech and Language Processing - Jurafsky and Martin 10

Advanced operators

• /\d/ = /[0-9]/

• /\D/ = /[^0-9]/

• /\w/ = /[a-zA-Z0-9_]/

• /\W/ = /[^\w]/

• /\s/ = [\r\t\n\f] (white space)

• /\S/ = /[^\s]/

8/22/2013 Speech and Language Processing - Jurafsky and Martin 11

Finite State Automata

• Regular expressions can be viewed as a textual
way of specifying the structure of finite-state
automata (FSA).

• Regular expressions can be implemented with
FSAs.

• FSAs and their probabilistic relatives are at the
core of much of what we’ll be doing all
semester.

• They also capture significant aspects of what
linguists say we need for morphology and parts
of syntax.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 12

FSAs as Graphs

• Let’s start with the sheep language from
Chapter 2
� /baa+!/

8/22/2013 Speech and Language Processing - Jurafsky and Martin 13

Sheep FSA

• We can say the following things about this
machine
� It has 5 states

� b, a, and ! are in its alphabet

� q0 is the start state

� q4 is an accept state

� It has 5 transitions

8/22/2013 Speech and Language Processing - Jurafsky and Martin 14

But Note

• There are other machines that
correspond to this same language

• More on this one later

8/22/2013 Speech and Language Processing - Jurafsky and Martin 15

More Formally

• We can specify an FSA by enumerating
the following things.

� The set of states: Q

� A finite alphabet: Σ

� A start state

� A set F of accept/final states

� A transition function that maps QxΣ to Q

8/22/2013 Speech and Language Processing - Jurafsky and Martin 16

The sheeptalk automaton

• Q = {q0,q1,q2,q3,q4}

• Σ = {a,b,!}

• F= {q4}

• δ(q,i) = State/

Input

b a !

0 1 Ø Ø

1 Ø 2 Ø

2 Ø 3 Ø

3 Ø 3 4

4: Ø Ø Ø

8/22/2013 Speech and Language Processing - Jurafsky and Martin 17

About Alphabets

• Don’t take term alphabet word too
narrowly; it just means we need a finite
set of symbols in the input.

• These symbols can and will stand for
bigger objects that can have internal
structure.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 18

Dollars and Cents

8/22/2013 Speech and Language Processing - Jurafsky and Martin 19

Recognition

• Recognition is the process of determining if
a string should be accepted by a machine

• Or… it’s the process of determining if a
string is in the language we’re defining with
the machine

• Or… it’s the process of determining if a
regular expression matches a string

• Those all amount the same thing in the end

8/22/2013 Speech and Language Processing - Jurafsky and Martin 20

Recognition

• Simply a process of starting in the start
state

• Examining the current input

• Consulting the table

• Going to a new state and updating the
input pointer.

• Until you run out of input.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 21

Deterministic (Finite-state)
Automaton (DFA)

• The behavior during recognition is fully
determined by the state it is in and the
symbol it is looking at.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 22

Deterministic recognition

• Input: a string x ending with EOF. DFA, D, with start state q0 and a set,
F, of final states.

• Output: true if D recognizes x, otherwise false.

q = q0

c = nextchar();

while (c <> EOF) {

q = move(q, c); // returns the state to which the

// automaton moves

// from state q on input c

c = nextchar();

}

if q ϵ F then return true

else return false;

8/22/2013 Speech and Language Processing - Jurafsky and Martin 23

Key Points

• Deterministic means that at each point in
processing there is always one unique
thing to do (no choices).

• D(eterministic)-recognize is a simple table-
driven interpreter

• The algorithm is universal for all
unambiguous regular languages.

� To change the machine, you simply change
the table.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 24

Key Points

• Crudely therefore… matching strings with
regular expressions (ala Perl, grep, vi, etc.) is
a matter of

� translating the regular expression into a machine
(a table) and

� passing the table and the string to an interpreter

8/22/2013 Speech and Language Processing - Jurafsky and Martin 25

Generative Formalisms

• Formal Languages are sets of strings
composed of symbols from a finite set of
symbols.

• Finite-state automata define formal
languages (without having to enumerate all
the strings in the language)

• The term Generative is based on the view
that you can run the machine as a
generator to get strings from the language.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 26

Generative Formalisms

• FSAs can be viewed from two
perspectives:

� Acceptors that can tell you if a string is in the
language

� Generators to produce all and only the strings
in the language

8/22/2013 Speech and Language Processing - Jurafsky and Martin 27

Non-Deterministic FSA (NFA)

DFA

NFA

8/22/2013 Speech and Language Processing - Jurafsky and Martin 28

Non-Determinism cont.

• Yet another technique

� Epsilon transitions (ϵ-transitions)

� Key point: these transitions do not examine or
advance the input during recognition

8/22/2013 Speech and Language Processing - Jurafsky and Martin 29

Equivalence

• Non-deterministic machines can be
converted to deterministic ones with a
fairly simple construction

• That means that they have the same
power; non-deterministic machines are
not more powerful than deterministic
ones in terms of the languages they can
accept

8/22/2013 Speech and Language Processing - Jurafsky and Martin 30

NFA Recognition

• Two basic approaches (used in all major
implementations of regular expressions,
see Friedl 2006)

1. Either take a NFA machine and convert it to
a DFA machine and then do recognition with
that.

2. Or explicitly manage the process of
recognition as a state-space search (leaving
the machine as is).

8/22/2013 Speech and Language Processing - Jurafsky and Martin 31

Non-Deterministic
Recognition: Search

• In an NFA there exists at least one path through
the machine for a string that is in the language
defined by the machine.

• But not all paths directed through the machine
for an accept string lead to an accept state.

• No paths through the machine lead to an accept
state for a string not in the language.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 32

Non-Deterministic
Recognition

• So success in non-deterministic
recognition occurs when a path is found
through the machine that ends in an
accept.

• Failure occurs when all of the possible
paths for a given string lead to failure.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 33

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

8/22/2013 Speech and Language Processing - Jurafsky and Martin 34

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 35

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 36

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 37

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 38

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 39

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 40

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 41

Example

8/22/2013 Speech and Language Processing - Jurafsky and Martin 42

Key Points

• States in the search space are pairings of
input positions and states in the machine.

• By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the machine
given an input.

8/22/2013 Speech and Language Processing - Jurafsky and Martin 43

Why Bother?

• Non-determinism doesn’t get us more
formal power and it causes headaches so
why bother?

�More natural (understandable) solutions

� Regular expressions can (easily) be converted
automatically to an NFA

8/22/2013 Speech and Language Processing - Jurafsky and Martin 44

Compositional Machines

• Formal languages are just sets of strings

• Therefore, we can talk about various set
operations (intersection, union,
concatenation)

• This turns out to be a useful exercise

8/22/2013 Speech and Language Processing - Jurafsky and Martin 45

Union

8/22/2013 Speech and Language Processing - Jurafsky and Martin 46

Concatenation

8/22/2013 Speech and Language Processing - Jurafsky and Martin 47

Negation

• Construct a machine M2 to accept all
strings not accepted by machine M1 and
reject all the strings accepted by M1

� Invert all the accept and not accept states in
M1

• Does that work for non-deterministic
machines?

