Natural Language
Processing

Partial/Chunk Parsing
Chapter 13.5 in Jurafsky&Martin

Sources

* These slides are borrowed from Mike
Rosner at University of Malta

()

= [his presentation is largely based on the
NLTK Chunking Tutorial by Steven Bird, Ewan
Klein and Edward Loper version 0.6.3 (2006)

March 2006 CLINT-CS

Two Kinds of Parsing

« full parsing with formal grammars
(HPSG, LFG, TAG, ...) to be compared
with robust parsing

« chunk parsing in the context of tagging
(also called partial, shallow, or robust
parsing.

« Chunk parsing is an efficient and robust
approach to parsing natural language

« It Is a popular alternative to full parsing

March 2006 CLINT-CS

Example Chunks

[l begin] [with an intuition] :

when | read] [a sentence] ,

| read it] [a chunk] [at a time] .

March 2006 CLINT-CS

Abney (1991): Parsing by Chunks

* These chunks correspond in some way to
prosodic patterns.

« ... the strongest stresses in the sentence
fall one to a chunk, and pauses are most
likely to fall between chunks.

* The typical chunk consists of a single
content word surrounded by a
constellation of function words, matching a
fixed template.

March 2006 CLINT-CS

Content and Function Words

[] [with an]

when!l]]a],

| read it] [a | [ata] .

Inter and Intra Chunk Structure

« Within chunks

= A simple context-free or finite state grammar is quite
adequate to describe the structure of chunks.

« Between chunks within a sentence

= By contrast, the relationships between chunks are
mediated more by lexical selection than by rigid
templates.

= [he order in which chunks occur is much more
flexible than the order of words within chunks.

March 2006 CLINT-CS

Summary

« Chunks are non-overlapping regions of
text

« Usually consisting of a head word (such as
a noun) and the adjacent modifiers and
function words (such as adjectives and
determiners).

March 2006 CLINT-CS

Chunking and Tagging

Tagging

« Segmentation — identifying tokens

« Labelling — identifying the correct tag

Chunk Parsing

« Segmentation — identifying strings of
tokens

« Labelling- identifying the correct chunk
type

March 2006 CLINT-CS

Segmentation and Labelling

March 2006 CLINT-CS

Chunking vs Full Parsing

« Both can be used to build hierarchical
structures

« Chunking involves hierarchies of limited
depth (usually 2)

« Complexity of full parsing typically O(n?),
versus O(n) for chunking

« Chunking leaves gaps between chunks

« Chunking can often give imperfect
results: [turned off the spectroroute

March 2006 CLINT-CS

Representing Chunks
IOB Tags vs Trees

« Each token is tagged with one of three
special chunk tags, INSIDE, OUTSIDE, or

BEGIN.
A token is tagged as BEGIN if it is at the

beginning of a chunk, and contained within
that chunk.

« Subsequent tokens within the chunk are
tagged INSIDE. All other tokens are
tagged OUTSIDE.

March 2006 CLINT-CS

Example |IOB Tags

JJ NN
INSIDE | | INSIDE

March 2006 CLINT-CS

Example Tree

March 2006 CLINT-CS

Chunk Parsing

A chunk parser finds contiguous, non-
overlapping spans of related tokens and
groups them together into chunks.

* |t then combines these individual chunks
together, along with the intervening
tokens, to form a chunk structure.

« A chunk structure is a two-level tree that
spans the entire text, and contains both
chunks and un-chunked tokens.

March 2006 CLINT-CS

Example Chunk Structure

(S: (NP:'I"
'saw
(NP: 'the' 'big' 'dog’)
'on
(NP: 'the' 'hill"))

CLINT-CS

Chunking with Regular Expressions

* NLTK-Lite provides a regular expression chunk
parser, parse.RegexpChunk to define the kinds
of chunk we are interested in, and then to chunk
a tagged text.

« The chunk parser begins with a structure in
which no tokens are chunked

« Each regular-expression pattern (or chunk rule)
IS applied In turn, successively updating the
chunk structure.

* Once all of the rules have been applied, the
resulting chunk structure is returned.

March 2006 CLINT-CS

Tag Strings

« A tag string Is a string consisting of tags
delimited with angle-brackets, e.g.,
<DT><JJ><NN><VBD><DT><NN>

* tag strings do not contain any whitespace.

March 2006 CLINT-CS

Chunking with Regular Expressions

« The NLTK chunk parser operates using
chunk definitions that are supplied in the
form of tag patterns which are regular
expressions over tags, e.g.

<DT><JJ>?<NN>
* NB: RE operators come after the tag.
* ? means an optional element

March 2006 CLINT-CS

Tag Patterns

« Angle brackets group, so <NN>+ matches
one or more repetitions of the tag string
<NN>; and <NN|JJ> matches the tag
strings <NN> or <JJ>.

* The operator * within angle brackets is a
wildcard, so that <NN.*> matches any
single tag starting with NN.

* <NN>* matches zero or more repetitions
of <NN>

March 2006 CLINT-CS

Another Example

<DT>7<JJ.">*<NN.*>
* In this case the DT is optional

“ It Is followed by zero or more instances of
<JJ.”>

« <JJ.”> matches any type of adjective

* The adjectives are followed by <NN.*>, i.e.
any type of NN.

March 2006 CLINT-CS

Creating a Chunk Parser in NLTK

« First create one or more rules

parse.ChunkRule('<DT|NN>+',
'Chunk sequences of DT and NN')

« Then create the parser
chunkparser =

parse.RegexpChunk([], chunk_node='NP’,
top_node='S’)
* Note that RegexpChunk has optional second
and third arguments that specity the node labels
for chunks and for the top-level node,

respectively.

March 2006 CLINT-CS

First Match Takes Precedence

« If a tag pattern matches at multiple
overlapping locations, the first match takes

precedence.

* For example, if we apply a rule that
matches two consecutive nouns to a text
containing three consecutive nouns, then
the first two nouns will be chunked

March 2006 CLINT-CS

Example

>>> from nltk_lite import tag
>>> text = "dog/NN cat/NN mouse/NN"
>>> Nnouns = tag.string2tags(text)

>>> rule = parse.ChunkRule('<NN><NN>', 'Chunk
two consecutive nouns')

>>> parser = parse.RegexpChunk([rule],
chunk _node='NP', top _node='S')

>>> parser.parse(nouns)
(S: (NP: ('dog’, 'NN') (‘cat’, 'NN")) ('mouse’, 'NN'))

March 2006 CLINT-CS

Two Rule Example

>>> sent = tag.string2tags("the/DT little/dJ cat/NN
sat/VBD on/IN the/DT mat/NN")

>>> rule1 = parse.ChunkRule('<DT><JJ><NN>',
'Chunk det+adj+noun’)

>>> rule2 = parse.ChunkRule('<DT|NN>+', 'Chunk
sequences of NN and DT")

>>> chunkparser = parse.RegexpChunk([rule1,
rule2], chunk_node='NP', top_node='S')

>>> chunk_tree = chunkparser.parse(sent,
trace=1)

March 2006 CLINT-CS

Trace

* Input:
<DT> <dJ> <NN> <VBD> <IN> <DT> <NN>
« Chunk det+adj+noun:

{<DT> <dJ> <NN>} <VBD> <IN> <DT>
<NN>

« Chunk sequences of NN and DT

{<DT> <dJ> <NN>} <VBD> <IN> {<DT>
<NN>}

March 2006 CLINT-CS

Rule Interaction

« When a ChunkRule is applied to a
chunking hypothesis, it will only create
chunks that do not partially overlap with
chunks already in the hypothesis.

* Thus, If we apply these two rules In
reverse order, we will get a different result:

March 2006 CLINT-CS

Reverse Order of Rules

« >>> chunkparser = parse.RegexpChunk([rule2,
rule1], chunk_node='NP’, top _node='S')

* Input:

<DT> <dJ> <NN> <VBD> <IN> <DT> <NN>
« Chunk sequences of NN and DT:

{<DT>} <dd> {<NN>} <VBD> <IN> {<DT> <NN>}
« Chunk det+adj+noun:

{<DT>} <dd> {<NN>} <VBD> <IN> {<DT> <NN>}

March 2006 CLINT-CS

Chinking Rules

« Sometimes it is easier to define what we don't want to
include in a chunk than we do want to include.

« Chinking is the process of removing a sequence of
tokens from a chunk.

« If the sequence of tokens spans an entire chunk, then
the whole chunk is removed; if the sequence of tokens
appears in the middle of the chunk, these tokens are
removed, leaving two chunks where there was only one
before.

« If the sequence is at the beginning or end of the chunk,
these tokens are removed, and a smaller chunk remains.

March 2006 CLINT-CS

Creating Chink Rules

« ChinkRules are created with the
ChinkRule constructor,

« >>> chink _rule =
parse.ChinkRule('<VBD|IN>+'", 'Chink
sequences of VBD and IN')

« To show how it works, we first define
chunkall_rule = parse.ChunkRule('<.*>+',
'Chunk everything')

« and then put the two together

March 2006 CLINT-CS

Running Chink Rules

>>> chunkparser =
parse.RegexpChunk([chunkall_rule, chink_rule],
chunk _node='NP', top_node='S')

* Input:
<DT> <dJd> <NN> <VBD> <IN> <DT> <NN>

« Chunk everything:
{<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>}

* Chink sequences of VBD and IN:
{<DT> <dJ> <NN>} <VBD> <IN> {<DT> <NN>}

March 2006 CLINT-CS

The Unchunk Rule

* Unchunk rules are very similar to
ChinkRule except that it will only remove a
chunk if the pattern matches an entire
chunk.

« >>> unchunk rule =
parse.UnChunkRule('<sNN|DT>+',
'‘Unchunk sequences of NN and DT")

March 2006 CLINT-CS

Chunkparser with Unchunk Rule

>>> chunk rule =
parse.ChunkRule('<sNN|DT|JJ>+','Chunk
sequences of NN, JJ, and DT")

>>> chunkparser =
parse.RegexpChunk([chunk_rule,
unchunk_rule], chunk node='NFP",
top_node='S")

March 2006 CLINT-CS

Unchunk Parser Trace

* Input:
<DT> <dd> <NN> <VBD> <IN> <DT>
<NN>

« Chunk sequences of NN, JJ, and DT:

{<DT> <dJ> <NN>} <VBD> <IN> {<DT>
<NN>}

* Unchunk sequences of NN and DT:

{<DT> <dJ> <NN>} <VBD> <IN> <DT>
<NN>

March 2006 CLINT-CS

Merge Rules

* MergeRules are used to merge two
contiguous chunks.

« Each MergeRule is parameterized by two
tag patterns: a left pattern and a right
pattern.

* A MergeRule will merge two contiguous
chunks C1 and C2 if the end of C1
matches the left pattern, and the beginning
of C2 matches the right pattern.

March 2006 CLINT-CS

Split Rules

« SplitRules are used to split a single chunk
into two smaller chunks.

« Each SplitRule is parameterized by two
tag patterns: a left pattern and a right

pattern.

« A SplitRule will split a chunk at any point

P, where t
chunk to t
matches t

March 2006

ne left pattern matches the
ne left of p, and the right pattern

ne chunk to the right of p.

CLINT-CS

Evaluating Chunk Parsers

« Essentially, evaluation is about comparing
the behaviour of a chunk parser against a
standard.

« Typically this involves the following phases
= Save already chunked text
= Unchunk it
« Chunk it using chunk parser

= Compare the result with the original chunked
text

March 2006 CLINT-CS

Evaluation Metrics

* Metrics are typically based on the
following sets:

= guessed: The set of chunks returned by the
chunk parser.

= correct: The correct set of chunks, as defined
In the test corpus.

* From these we can define useful
measures

March 2006 CLINT-CS

Evaluation Metrics

* Precision:
= Number of correct chunks guessed by parser /
Total number of guessed chunks
« Recall:
* Number of correct chunks guessed by parser /
Total number of correct chunks
* F-Measure: harmonic mean of precision and
recall
« F, =2PR/(P+R)

March 2006 CLINT-CS

