
March 2006 CLINT-CS 1

Natural Language

Processing

Partial/Chunk Parsing

Chapter 13.5 in Jurafsky&Martin

2March 2006 CLINT-CS

Sources

These slides are borrowed from Mike
Rosner at University of Malta
(http://staff.um.edu.mt/mros1/)

� This presentation is largely based on the

NLTK Chunking Tutorial by Steven Bird, Ewan

Klein and Edward Loper version 0.6.3 (2006)

3March 2006 CLINT-CS

Two Kinds of Parsing

full parsing with formal grammars
(HPSG, LFG, TAG, ...) to be compared
with robust parsing

chunk parsing in the context of tagging
(also called partial, shallow, or robust
parsing.

Chunk parsing is an efficient and robust
approach to parsing natural language

It is a popular alternative to full parsing

4March 2006 CLINT-CS

Example Chunks

[I begin] [with an intuition] :

[when I read] [a sentence] ,

[I read it] [a chunk] [at a time] .

5March 2006 CLINT-CS

Abney (1991): Parsing by Chunks

These chunks correspond in some way to
prosodic patterns.

… the strongest stresses in the sentence
fall one to a chunk, and pauses are most
likely to fall between chunks.

The typical chunk consists of a single
content word surrounded by a
constellation of function words, matching a
fixed template.

6March 2006 CLINT-CS

Content and Function Words

[I begin] [with an intuition] :

[when I read] [a sentence] ,

[I read it] [a chunk] [at a time] .

7March 2006 CLINT-CS

Inter and Intra Chunk Structure

Within chunks

� A simple context-free or finite state grammar is quite

adequate to describe the structure of chunks.

Between chunks within a sentence

� By contrast, the relationships between chunks are

mediated more by lexical selection than by rigid

templates.

� The order in which chunks occur is much more

flexible than the order of words within chunks.

8March 2006 CLINT-CS

Summary

Chunks are non-overlapping regions of
text

Usually consisting of a head word (such as
a noun) and the adjacent modifiers and
function words (such as adjectives and
determiners).

9March 2006 CLINT-CS

Chunking and Tagging

Tagging

Segmentation – identifying tokens

Labelling – identifying the correct tag

Chunk Parsing

Segmentation – identifying strings of
tokens

Labelling- identifying the correct chunk
type

10March 2006 CLINT-CS

Segmentation and Labelling

11March 2006 CLINT-CS

Chunking vs Full Parsing

Both can be used to build hierarchical
structures

Chunking involves hierarchies of limited
depth (usually 2)

Complexity of full parsing typically O(n3),
versus O(n) for chunking

Chunking leaves gaps between chunks

Chunking can often give imperfect
results: I turned off the spectroroute

12March 2006 CLINT-CS

Representing Chunks

IOB Tags vs Trees

Each token is tagged with one of three
special chunk tags, INSIDE, OUTSIDE, or
BEGIN.

A token is tagged as BEGIN if it is at the
beginning of a chunk, and contained within
that chunk.

Subsequent tokens within the chunk are
tagged INSIDE. All other tokens are
tagged OUTSIDE.

13March 2006 CLINT-CS

Example IOB Tags

14March 2006 CLINT-CS

Example Tree

15March 2006 CLINT-CS

Chunk Parsing

A chunk parser finds contiguous, non-
overlapping spans of related tokens and
groups them together into chunks.

It then combines these individual chunks
together, along with the intervening
tokens, to form a chunk structure.

A chunk structure is a two-level tree that
spans the entire text, and contains both
chunks and un-chunked tokens.

16March 2006 CLINT-CS

Example Chunk Structure

(S: (NP: 'I')

'saw'

(NP: 'the' 'big' 'dog')

'on'

(NP: 'the' 'hill'))

17March 2006 CLINT-CS

Chunking with Regular Expressions

NLTK-Lite provides a regular expression chunk
parser, parse.RegexpChunk to define the kinds
of chunk we are interested in, and then to chunk
a tagged text.

The chunk parser begins with a structure in
which no tokens are chunked

Each regular-expression pattern (or chunk rule)
is applied in turn, successively updating the
chunk structure.

Once all of the rules have been applied, the
resulting chunk structure is returned.

18March 2006 CLINT-CS

Tag Strings

A tag string is a string consisting of tags
delimited with angle-brackets, e.g.,
<DT><JJ><NN><VBD><DT><NN>

tag strings do not contain any whitespace.

19March 2006 CLINT-CS

Chunking with Regular Expressions

The NLTK chunk parser operates using
chunk definitions that are supplied in the
form of tag patterns which are regular
expressions over tags, e.g.

<DT><JJ>?<NN>

NB: RE operators come after the tag.

? means an optional element

20March 2006 CLINT-CS

Tag Patterns

Angle brackets group, so <NN>+ matches
one or more repetitions of the tag string
<NN>; and <NN|JJ> matches the tag
strings <NN> or <JJ>.

The operator * within angle brackets is a
wildcard, so that <NN.*> matches any
single tag starting with NN.

<NN>* matches zero or more repetitions
of <NN>

21March 2006 CLINT-CS

Another Example

<DT>?<JJ.*>*<NN.*>

In this case the DT is optional

It is followed by zero or more instances of
<JJ.*>

<JJ.*> matches any type of adjective

The adjectives are followed by <NN.*>, i.e.
any type of NN.

22March 2006 CLINT-CS

Creating a Chunk Parser in NLTK
First create one or more rules
rule1 =

parse.ChunkRule('<DT|NN>+',

'Chunk sequences of DT and NN')

Then create the parser
chunkparser =

parse.RegexpChunk([rule1], chunk_node='NP',
top_node='S')

Note that RegexpChunk has optional second
and third arguments that specify the node labels
for chunks and for the top-level node,
respectively.

23March 2006 CLINT-CS

First Match Takes Precedence

If a tag pattern matches at multiple
overlapping locations, the first match takes
precedence.

For example, if we apply a rule that
matches two consecutive nouns to a text
containing three consecutive nouns, then
the first two nouns will be chunked

24March 2006 CLINT-CS

Example

>>> from nltk_lite import tag

>>> text = "dog/NN cat/NN mouse/NN"

>>> nouns = tag.string2tags(text)

>>> rule = parse.ChunkRule('<NN><NN>', 'Chunk

two consecutive nouns')

>>> parser = parse.RegexpChunk([rule],

chunk_node='NP', top_node='S')

>>> parser.parse(nouns)

(S: (NP: ('dog', 'NN') ('cat', 'NN')) ('mouse', 'NN'))

25March 2006 CLINT-CS

Two Rule Example

>>> sent = tag.string2tags("the/DT little/JJ cat/NN
sat/VBD on/IN the/DT mat/NN")

>>> rule1 = parse.ChunkRule('<DT><JJ><NN>',
'Chunk det+adj+noun')

>>> rule2 = parse.ChunkRule('<DT|NN>+', 'Chunk
sequences of NN and DT')

>>> chunkparser = parse.RegexpChunk([rule1,
rule2], chunk_node='NP', top_node='S')

>>> chunk_tree = chunkparser.parse(sent,
trace=1)

26March 2006 CLINT-CS

Trace

Input:

<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>

Chunk det+adj+noun:

{<DT> <JJ> <NN>} <VBD> <IN> <DT>
<NN>

Chunk sequences of NN and DT:

{<DT> <JJ> <NN>} <VBD> <IN> {<DT>
<NN>}

27March 2006 CLINT-CS

Rule Interaction

When a ChunkRule is applied to a
chunking hypothesis, it will only create
chunks that do not partially overlap with
chunks already in the hypothesis.

Thus, if we apply these two rules in
reverse order, we will get a different result:

28March 2006 CLINT-CS

Reverse Order of Rules

>>> chunkparser = parse.RegexpChunk([rule2,

rule1], chunk_node='NP', top_node='S')

Input:

<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>

Chunk sequences of NN and DT:

{<DT>} <JJ> {<NN>} <VBD> <IN> {<DT> <NN>}

Chunk det+adj+noun:

{<DT>} <JJ> {<NN>} <VBD> <IN> {<DT> <NN>}

29March 2006 CLINT-CS

Chinking Rules

Sometimes it is easier to define what we don't want to
include in a chunk than we do want to include.

Chinking is the process of removing a sequence of
tokens from a chunk.

If the sequence of tokens spans an entire chunk, then
the whole chunk is removed; if the sequence of tokens
appears in the middle of the chunk, these tokens are
removed, leaving two chunks where there was only one
before.

If the sequence is at the beginning or end of the chunk,
these tokens are removed, and a smaller chunk remains.

30March 2006 CLINT-CS

Creating Chink Rules

ChinkRules are created with the
ChinkRule constructor,

>>> chink_rule =
parse.ChinkRule('<VBD|IN>+', 'Chink
sequences of VBD and IN')

To show how it works, we first define
chunkall_rule = parse.ChunkRule('<.*>+',
'Chunk everything')

and then put the two together

31March 2006 CLINT-CS

Running Chink Rules

>>> chunkparser =

parse.RegexpChunk([chunkall_rule, chink_rule],

chunk_node='NP', top_node='S')

Input:

<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>

Chunk everything:

{<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>}

Chink sequences of VBD and IN:

{<DT> <JJ> <NN>} <VBD> <IN> {<DT> <NN>}

32March 2006 CLINT-CS

The Unchunk Rule

Unchunk rules are very similar to
ChinkRule except that it will only remove a
chunk if the pattern matches an entire
chunk.

>>> unchunk_rule =
parse.UnChunkRule('<NN|DT>+',
'Unchunk sequences of NN and DT')

33March 2006 CLINT-CS

Chunkparser with Unchunk Rule

>>> chunk_rule =
parse.ChunkRule('<NN|DT|JJ>+','Chunk
sequences of NN, JJ, and DT')

>>> chunkparser =
parse.RegexpChunk([chunk_rule,
unchunk_rule], chunk_node='NP',
top_node='S')

34March 2006 CLINT-CS

Unchunk Parser Trace

Input:

<DT> <JJ> <NN> <VBD> <IN> <DT>
<NN>

Chunk sequences of NN, JJ, and DT:

{<DT> <JJ> <NN>} <VBD> <IN> {<DT>
<NN>}

Unchunk sequences of NN and DT:

{<DT> <JJ> <NN>} <VBD> <IN> <DT>
<NN>

35March 2006 CLINT-CS

Merge Rules

MergeRules are used to merge two
contiguous chunks.

Each MergeRule is parameterized by two
tag patterns: a left pattern and a right
pattern.

A MergeRule will merge two contiguous
chunks C1 and C2 if the end of C1
matches the left pattern, and the beginning
of C2 matches the right pattern.

36March 2006 CLINT-CS

Split Rules

SplitRules are used to split a single chunk
into two smaller chunks.

Each SplitRule is parameterized by two
tag patterns: a left pattern and a right
pattern.

A SplitRule will split a chunk at any point
p, where the left pattern matches the
chunk to the left of p, and the right pattern
matches the chunk to the right of p.

37March 2006 CLINT-CS

Evaluating Chunk Parsers

Essentially, evaluation is about comparing
the behaviour of a chunk parser against a
standard.

Typically this involves the following phases
� Save already chunked text

� Unchunk it

� Chunk it using chunk parser

� Compare the result with the original chunked
text

38March 2006 CLINT-CS

Evaluation Metrics

Metrics are typically based on the
following sets:

� guessed: The set of chunks returned by the

chunk parser.

� correct: The correct set of chunks, as defined

in the test corpus.

From these we can define useful
measures

39March 2006 CLINT-CS

Evaluation Metrics

Precision:
� Number of correct chunks guessed by parser /

Total number of guessed chunks

Recall:
Number of correct chunks guessed by parser /

Total number of correct chunks

F-Measure: harmonic mean of precision and
recall
� F1 = 2PR / (P+R)

