Speech and Language
Processing

N-grams
Chapter 4 of SLP

*

= \WWord prediction task

= Language modeling (N-grams)
= N-gram intro
= The chain rule

= Model evaluation
= Smoothing

8/29/2013 Speech and Language Processing - Jurafsky and Martin 2

or reaiction

= Guess the next word...
= ... I notice three guys standing on the ???

= There are many sources of knowledge
that can be used to inform this task,
including arbitrary world knowledge.

= But it turns out that you can do pretty well
by simply looking at the preceding words
and keeping track of some fairly simple
counts.

8/29/2013 Speech and Language Processing - Jurafsky and Martin

Wora Prealctlon

= WWe can formalize this task using what are
called Ngram models.

= AM-grams are token sequences of length .

= Our earlier example contains the following
2-grams (aka bigrams)
= (I notice), (notice three), (three guys), (quys

standing), (standing on), (on the)

= Given knowledge of counts of N-grams such
as these, we can guess likely next words in
a sequence.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 4

’U-Eram IalOHEIS

= More formally, we can use knowledge of
the counts of A~grams to assess the
conditional probability of candidate words
as the next word in a sequence.

= Or, we can use them to assess the
probability of an entire sequence of words.

= Pretty much the same thing as we’'ll see...

8/29/2013 Speech and Language Processing - Jurafsky and Martin 5

- !pplllca!llons

= [t turns out that being able to predict the next
word (or any linguistic unit) in a sequence is an
extremely useful thing to be able to do.

= As we'll see, it lies at the core of the following
applications
= Automatic speech recognition
Handwriting and character recognition
Spelling correction
Machine translation
And many more.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 6

!ou n!_lng

= Simple counting lies at the core of any
probabilistic approach. So let’s first take a
look at what we're counting.

= He stepped out into the hall, was delighted to
encounter a water brother.

= 13 tokens, 15 if we include *,” and “.” as separate
tokens.

= Assuming we include the comma and period, how
many bigrams are there?

8/29/2013 Speech and Language Processing - Jurafsky and Martin 7

Eountlng: !ypes ana !okens

= How about

= They picnicked by the pool, then lay back on
the grass and looked at the stars.

= 18 tokens (again counting punctuation)
= But we might also note that “#/¢€” is used

3 times, so there are only 16 unique types
(as opposed to tokens).

= In going forward, we’ll have occasion to
focus on counting both types and tokens
of both words and A-grams.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 8

Counting: Worﬂ!orms

= Should “cats” and “cat” count as the same
when we're counting?

= How about “geese” and “goose™?

= Some terminology:

= Lemma: a set of lexical forms having the
same stem, major part of speech, and rough
word sense

= Wordform: fully inflected surface form

= Again, we'll have occasion to count both
lemmas and wordforms

8/29/2013 Speech and Language Processing - Jurafsky and Martin 9

"""Counting: Corpora

= S0 what happens when we look at large bodies
of text instead of single utterances?

= Brown et al (1992) large corpus of English text

= 583 million wordform tokens
= 293,181 wordform types

= Google
= Crawl of 1,024,908,267,229 English tokens

= 13,588,391 wordform types

= That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?

8/29/2013 Speech and Language Processing - Jurafsky and Martin

10

Language Moae"ng

= Back to word prediction

= \We can model the word prediction task as
the ability to assess the conditional
probability of a word given the previous
words in the sequence

= P(W,|W{,W5...W__{)
s We'll call a statistical model that can
assess this a Language Mode/

= A probabilistic estimation for the frequency of
words and word sequences, usually derived
from a corpus.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 11

Eanguage Moae"ng

= How might we go about calculating such a
conditional probability?

= One way is to use the definition of conditional
probabilities and look for counts. So to get

= P(the | its water is so transparent that)
= By definition that’s P(AIB) = P(A N B) / P(B)
P(its water is so transparent that the)

P(its water is so transparent that)

We can get each of those from counts in a large
corpus.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 12

*ery asy Estimate

= How to estimate?
= P(the | its water is so transparent that)

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

8/29/2013 Speech and Language Processing - Jurafsky and Martin 13

Oery !asy !s!llma!e

= According to Google those counts are 5/9.

= Unfortunately... 2 of those were to these
slides... So maybe it's really

= 3/7

= In any case, that'’s not terribly convincing due
to the small numbers involved.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 14

Eanguage Moae"ng

= Unfortunately, for most sequences and for
most text collections we won't get good
estimates from this method.

= What we're likely to get is 0. Or worse 0/0.
= Clearly, we'll have to be a little more
Clever.
= | et’s use the chain rule of probability

= And a particularly useful independence
assumption.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 15

" ThechainRule

= Recall the definition of conditional probabilities

_ P(AnB)
= Rewriting: P(A1B) = P(B)

P(ANnB)=P(A|B)P(B)
= For sequences...
= P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
= In general

= P(X{,X5,X3,...X,) =
P(X1)P(X;|X1)P(X3|X1,%5)...P(X,[X1... X1-1)

8/29/2013 Speech and Language Processing - Jurafsky and Martin 16

P(w}) = P(w1)P(wp|w1)P(ws|wi)...P(w,wi=1)

n

= [TPOwlwi™)

k=1

P(its water was so transparent)=
P(its)*
P(water|its)*
P(was|its water)*
P(so|its water was)*
P(transparent|its water was so)

8/29/2013 Speech and Language Processing - Jurafsky and Martin 17

Un!or!u na!ely

= There are still a lot of possible sentences

= In general, we'll never be able to get
enough data to compute the statistics for
those longer prefixes

= Same problem we had for the strings
themselves

8/29/2013 Speech and Language Processing - Jurafsky and Martin 18

!naepenaence XSsumptlon

= Make the simplifying assumption

= P(lizard|the,other,day,I,was,walking,along,an
d,saw,a) = P(lizard|a)

= Or maybe

= P(lizard|the,other,day,I,was,walking,along,an
d,saw,a) = P(lizard|saw,a)

= That is, the probability in question is
independent of its earlier history.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 19

ﬁn epe*n ence !ssqump |o-n

= This particular kind of independence assumption
is called a Markov assumption after the Russian
mathematician Andrei Markov.

2z A PLAYER - MEMODRASILIA

8/29/2013 Speech and Language Processing - Jurafsky and Martin 20

HarEov !ssump!llon

So for each component in the product replace with the
approximation (assuming a prefix of N)

P(Wnl) P(Wnl N+1

Bigram version

Pw 1w =Pw lw_)

8/29/2013 Speech and Language Processing - Jurafsky and Martin 21

" Estimating Bigram

Probabilities
= The Maximum Likelihood Estimate (MLE)

count(w,_,,w,)

Pw,lw,_)=
(i 1wia) count(w_,)

8/29/2013 Speech and Language Processing - Jurafsky and Martin 292

W

= <s>Tam Sam </s>
= <s>Sam I am </s>
= <s>] do not like green eggs and ham </s>

P(I|<s>)=%=.67 P(sam|<s>)=3=.33 P(am|I)=3=.67
P(</s>|Sam) = %- =0.5 P(Sam|am)= é- =.5 P(do|I)= % =.33

8/29/2013 Speech and Language Processing - Jurafsky and Martin 23

" Berkeley Restaurant Project

Sentences

= can you tell me about any good cantonese restaurants
close by

= mid priced thai food is what rm looking for
= tell me about chez panisse

= can you give me a listing of the kinds of food that are
avallable

= /’m looking for a good place to eat breakiast
= when is caffe venezia open during the aay

8/29/2013 Speech and Language Processing - Jurafsky and Martin 24

W

= Qut of 9222 sentences
= Eg. "I want” occurred 827 times

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

8/29/2013 Speech and Language Processing - Jurafsky and Martin 25

!llgram !roEaE"ll!lles

= Divide bigram counts by prefix unigram

_counts to get probabilities.

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food lunch | spend

1 0.002 03310 0.0036 | 0 0 0 0.00079
want 0.0022 | O 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 [0.056 | 0O
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 10
food 0.014 0 0.014 |0 0.00092 | 0.0037 | O 0
lunch 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 | 0 0.0036 | O 0 0 0 0

8/29/2013

Speech and Language Processing - Jurafsky and Martin

26

Probabilities

» P(<s> I want english food </s>) =
P(i|<s>)*
P(want|I)*
P(english|want)*
P(food|english)*
P(</s>|food)*
=.000031

8/29/2013 Speech and Language Processing - Jurafsky and Martin 27

!"annon S IUIEH!OH

= Assigning probabilities to sentences is all
well and good, but it’s not terribly
illuminating . A more interesting task is to
turn the model around and use it to
generate random sentences that are /ike
the sentences from which the model was
derived.

= Generally attributed to
Claude Shannon.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 28

= Sample a random bigram (<s>, w) according to its probability
= Now sample a random bigram (w, x) according to its probability

= Where the prefix w matches the suffix of the first.

= And so on until we randomly choose a (y, </s>)

= Then string the words together
m <s> 1
I want
want to
to eat
eat Chinese
Chinese food
food </s>

8/29/2013 Speech and Language Processing - Jurafsky and Martin

29

8/29/2013

I

Unigram

¢ To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter

¢ Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he is trim, captain.

eWhy dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

¢ Fly, and will r1d me these news of price. Therefore the sadness of parting, as they
say, ‘tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.

Speech and Language Processing - Jurafsky and Martin

30

!"aEespeare aS d EOI‘pUS

= N=884,647 tokens, V=29,066

= Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams...

= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)

= This is the biggest problem in language modeling;
we'll come back to it.
= Quadrigrams are worse: What's coming out
looks like Shakespeare because it /s
Shakespeare

8/29/2013 Speech and Language Processing - Jurafsky and Martin 31

s —
Evaluation

= How do we know if our models are any
good?
= And in particular, how do we know if one
model is better than another.

= Well Shannon’s game gives us an
intuition.

= The generated texts from the higher order
models sure look better. That is, they sound
more like the text the model was obtained
from.

= But what does that mean? Can we make that
notion operational?

8/29/2013 Speech and Language Processing - Jurafsky and Martin 32

!valuallon

» Standard method

= Train parameters of our model on a training set.

= Look at the models performance on some new data

= This is exactly what happens in the real world; we want to
know how our model performs on data we haven't seen

= So use a test set. A dataset which is different than
our training set, but is drawn from the same source

= Then we need an evaluation metric to tell us how
well our model is doing on the test set.

= One such metric is perplexity (to be introduced below)

8/29/2013 Speech and Language Processing - Jurafsky and Martin 33

UI‘I&I‘IOWI‘I UUOI‘HS

= But once we start looking at test data, we'll run
into words that we haven't seen before (pretty
much regardless of how much training data you
have).

= With an Open Vocabulary task
= Create an unknown word token <UNK>

= Training of <UNK> probabilities

= Create a fixed lexicon L, of size V
= From a dictionary or
= A subset of terms from the training set

= At text normalization phase, any training word not in L changed to
<UNK>

= Now we count that like a normal word

= At test time
= Use UNK counts for any word not in training

8/29/2013 Speech and Language Processing - Jurafsky and Martin 34

!erplem!y

1

Perplexity is the probability of =~ PP(W) = P(wiwz...wy)™¥
the test set (assigned by the B i,/ 1

language model), normalized by | P(wiwa..owy
the number of words: J

1=

Chain rule: ppw) =
() i=1P(W,‘|W1...W,'_1)

For bigrams: N
__ N
PP(W) = [[1 B w,lw, y

= Minimizing perplexity is the same as maximizing

8/29/2013

probability
= The best language model is one that best
predicts an unseen test set

Speech and Language Processing - Jurafsky and Martin 35

better model

= Training 38 million words, test 1.5 million
words, WSJ

N-gram Order
Perplexity

Unigram
962

Bigram | Trigram
170 109

8/29/2013 Speech and Language Processing - Jurafsky and Martin 36

T —————
Evaluating N-Gram Models

= Best evaluation for a language model

= Put model A into an application
= For example, a speech recognizer

= Fvaluate the performance of the
application with model A

= Put model B into the application and
evaluate

= Compare performance of the application
with the two models

s Extrinsic evaluation

8/29/2013 Speech and Language Processing - Jurafsky and Martin 37

‘Difficulty of extrinsic (in-vivo)

evaluation of N-gram models

= Extrinsic evaluation
= This is really time-consuming
= Can take days to run an experiment

= S0
= As a temporary solution, in order to run experiments

= To evaluate N-grams we often use an intrinsic
evaluation, an approximation called perplexity

= But perplexity is a poor approximation unless the test
data looks just like the training data

= So is generally only useful in pilot experiments
(generally is not sufficient to publish)

= But is helpful to think about.

8/29/2013 Speech and Language Processing - Jurafsky and Martin

38

!EI‘O !OUI‘I!S

= Back to Shakespeare

= Recall that Shakespeare produced 300,000 bigram
types out of V2= 844 million possible bigrams...

= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)

= Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?

8/29/2013 Speech and Language Processing - Jurafsky and Martin 39

R EREERRRRER==
Zero Counts

= Some of those zeros are really zeros...
= Things that really can't or shouldn’t happen.
= On the other hand, some of them are just rare events.

= [If the training corpus had been a little bigger they would have had a
count (probably a count of 11!).

= Zipf's Law (long tail phenomenon):
= A small number of events occur with high frequency
= A large number of events occur with low frequency
= You can quickly collect statistics on the high frequency events

= You might have to wait an arbitrarily long time to get valid statistics
on low frequency events

= Result:

= Qur estimates are sparse! We have no counts at all for the vast bulk
of things we want to estimate!

= Answer:
= Estimate the likelihood of unseen (zero count) N-grams!

8/29/2013 Speech and Language Processing - Jurafsky and Martin 40

"""Laplace Smoothing

= Also called add-one smoothing
= Just add one to all the counts!

= Very simple

= MLE estimate: P(wi) = T

Ci

e

\v'

C,'-|—1

= Laplace estimate: F Laplace(w") T N1V

= Reconstructed counts: c¢; =(¢;+1)

8/29/2013

Speech and Language Processing - Jurafsky and Martin

N

N

+V

41

Counts
1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
8/29/2013 Speech and Language Processing - Jurafsky and Martin 42

P (Wn |Wn—1) —

Probabilities

C(Wn—lwn) + 1

C (Wn—1) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042(0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026(0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046(0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056 0.00056| 0.00056| 0.00056(0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058] 0.00058| 0.00058
8/29/2013 Speech and Language Processing - Jurafsky and Martin 43

!ECOI‘IS!I !u !E! !oun !S

e

c” (Wn— 1 Wn) =

A

S

C(wp1wy) + 1] % Cow_1)

C(W,,_l) +V

1 want to eat chinese | food| Iunch| spend
1 3.8 521 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 44 133
eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57] 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 [0.16 0.16

8/29/2013

Speech and Language Processing - Jurafsky and Martin

44

!I|g !Hange !o !He !oun!s.l

= C(count to) went from 608 to 238!
= P(to|want) from .66 to .26!
= Discount d= c*/c
= d for “chinese food” =.10!!! A 10x reduction

= So in general, Laplace is a blunt instrument
= Could use more fine-grained method (add-k)

= But Laplace smoothing not used for N-grams, as we
have much better methods

= Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially
= For pilot studies
= in domains where the number of zeros isn't so huge.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 45

!e!!er !moo!Hlmg

= Intuition used by many smoothing
algorithms
= Good-Turing
= Kneser-Ney
= Witten-Bell

= [s to use the count of things we've seen
once to help estimate the count of things
we've never seen

8/29/2013 Speech and Language Processing - Jurafsky and Martin 46

Josh Goodman Intuition
= Imagine you are fishing

= There are 8 species: carp, perch, whitefish, trout,
salmon, eel, catfish, bass

= You have caught
= 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel
= 18 fish
= How likely is it that the next fish caught is from
a hew species (one not seen in our previous
catch)?
= 3/18
= Assuming so, how likely is it that next species is

trout?
= Must be less than 1/18

8/29/2013 Sli@%eggaapmgq%ngﬂ%g Plc?c%%s%ogggéﬂy and Martin 47

!ooa-!u r||ng

= Notation: N, is the frequency-of-frequency-x
= S50 Nyy=1
= Number of fish species seen 10 times is 1 (carp)
= N,=3
= Number of fish species seen 1 is 3 (trout, salmon, eel)
= To estimate total number of unseen species
= Use number of species (words) we've seen once
"Gy =C; Po=Ny/N ¢ = (c+ 1)Nc+l
Nc
= All other estimates are adjusted (down) to give
probabilities for unseen

8/29/2013 Sh@%efe‘gﬁgr}d’] L%%&Ja(g}eo Ig)rglc%%gill:]lg - Jurafsky and Martin 48

Eooa-!urmg !n!m!lon

= Notation: N, is the frequency-of-frequency-x
= 50 Nyp=1, N;=3, etc
= To estimate total number of unseen species

= Use number of species (words) we've seen once
= C, =C; Py =N,/N =3/18

P¢r (things with frequency zero in training) =

2| 2

= All other estimates are adjusted (down) to give
probabilities for unseen
Nc+l c*(trout) = (1+1) 1/3 = 2/3
N

8/29/2013 Sh(é%egléglalr}dj L%%glg’ha(g}eo Ig)rgic%%gill:]lg - Jurafsky and Martin 49

¢ =(c+1)

T GTFish Example

unseen (bass or catfish) trout
c 0 1
MLEp |[p=1¢=0 =
& c*(trou)=2 X 3 =2 x 4 = .67
GT pir || P (unseen) = % = 13—8 = .17 | pgp(trout) = % = 2% = .037

8/29/2013

Speech and Language Processing - Jurafsky and Martin

50

" Bigram Frequencies of

Frequencies and
GT Re-estimates

AP Newswire Berkeley Restaurant—

¢ (MLE) N. ¢ (GT) ¢ (MLE) N. ¢ (GT)

0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

8/29/2013 Speech and Language Processing - Jurafsky and Martin 51

All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a
variety of R&D projects, such as statistical machine translation, speech
recognition, spelling correction, entity detection, information extraction,
and others. While such models have usually been estimated from training

10 share this enormous gataset with everyone. vwe processead

1,024 908,267,229 words of running text and are publishing the counts
forall 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear
less than 200 times.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 52

- Py e

" serve as the i1ncoming 92

" serve as the incubator 99

" serve as the independent 794

" serve as the index 223

" serve as the indication 72

" serve as the indicator 120

" serve as the indicators 45

" serve as the indispensable 111
" serve as the indispensible 40
" serve as the individual 234

8/29/2013 Speech and Language Processing - Jurafsky and Martin 53

Eoogle Eaveat

= Remember the lesson about test sets and
training sets... Test sets should be similar
to the training set (drawn from the same
distribution) for the probabilities to be
meaningful.

= So... The Google corpus is fine if your
application deals with arbitrary English
text on the Web.

= If not then a smaller domain specific
corpus is likely to yield better results.

8/29/2013 Speech and Language Processing - Jurafsky and Martin 54

