
Natural Language Processing � Assignment II

Reykjavik University � School of Computer Science

October 2015

1 NLTK: The Icelandic Frequency Dictionary � 25%

In this part, you use Python and NLTK to process a PoS-tagged Icelandic corpus, the Icelandic Frequency Dictionary
(IFD ; �Íslensk Orðtíðnibók�).1 A preprocessed version of the IFD containing one sentence per line, is available as
the �le otb.slash.sent, from http://www.ru.is/~hrafn/courses/nlp/ifdpenn.zip.2

This part is divided into the subparts described below, but you should return a single Python program, ifd.py,
which includes all the code needed for carrying out these tasks.

Write code to:

1. Read in the IFD using the class TaggedCorpusReader, display the number of sentences, and display the
individual tokens of sentence nr. 50.

2. Display the number of tokens and the number of types in the IFD.

3. Display the 10 most frequent tokens in the IFD using the class FreqDist.

4. Display the 20 most frequent tags in the IFD using the class FreqDist.

5. Generate tag bigrams and use the class ConditionalFreqDist to print out the 10 most frequent tags that can
follow the tag 'ao' (this tag denotes a preposition which govern the accusative case).

Example output follows:

Number of sentences: 36922

Sentence no. 50:

landið varð ekki lengur umflúið .

Number of tokens: 590300

Number of types: 59359

The 10 most frequent tokens

. => 33182

og => 22213

, => 22083

að => 21012

í => 15319

á => 12450

hann => 8040

var => 7905

sem => 7676

er => 6362

The 20 most frequent PoS tags:

1See http://www.malfong.is/index.php?pg=ordtidnibok&lang=en
2Please make sure not to distribute the IFD corpus.

1



AA => 50423

C => 42507

Aþ => 33268

. => 33182

SFG3Eþ => 27730

, => 22083

AO => 21728

SNG => 15258

SFG3EN => 13447

CN => 11558

SSG => 6987

FPKEN => 6977

AE => 6328

NKEN-S => 6213

CT => 6204

FP1EN => 6047

NKEN => 5651

NHEþ => 5628

SFG3Fþ => 5626

NVEO => 5478

The 10 most frequent PoS tags following the tag 'ao':

NVEO => 1753

NKEO => 1681

NHEO => 1579

NKEOG => 1538

NHEOG => 1399

NVEOG => 1055

CN => 608

NVFO => 596

FPKEO => 553

C => 535

2 NLTK: PoS tagging � 25%

In this part, you experiment with various di�erent types of PoS taggers in the NLTK using the Penn Treebank
corpus (accessible in Python with from nltk.corpus import treebank).

By studying chapter 5 in the NLTK book (http://nltk.org/book/), you should have all the necessary ma-
terial to solve this part. The Python module NLTK documentation, http://nltk.org/api/nltk.tag.html#

module-nltk.tag is also an important source of information.
This part is divided into the subparts described below, but you should return a single Python program, tagg-

ing.py, which includes all the code needed for carrying out these tasks.
Write code to:

1. Split the tagged sentences of the Penn Treebank into a training set (�rst 3500 sentences) and a test set (the
remaining sentences), print out the total count of each set, and print the �rst sentence in the test set.

2. Construct four taggers trained on the training set: an instance of an A�xTagger, UnigramTagger, Bigram-

Tagger and a TrigramTagger (without any �backo�� model). Evaluate them on the test set, and print out
the evaluation results.

3. Construct the latter three taggers again, but now with a backo� model, i.e. such that the trigram tagger
uses a bigram tagger as backo�, which in turn uses a unigram tagger as backo�, which in turn uses the a�x
tagger as backo�. Print the evaluation results again.

2



4. Tag the test set with the main (�o�-the-shelf�) tagger in the NLTK3, evaluate its accuracy and print out
the result. Note that for this tagger you cannot simply call a built-in evaluation function, instead you have
to write your own, which compares the results of the tagger to the gold standard. You will notice that the
tagging accuracy for this tagger is surprisingly high. What do you think is the reason?

Example output follows:

Number of training sentences: 3500

Number of test sentences: xxx

First sentence in test corpus:

[('About', 'IN'), ('30', 'CD'), ('%', 'NN'), ('of', 'IN'), ('Ratners', 'NNP'), ("'s", 'POS'),

('profit', 'NN'), ('already', 'RB'), ('is', 'VBZ'), ('derived', 'VBN'), ('*-1', '-NONE-'),

('from', 'IN'), ('the', 'DT'), ('U.S.', 'NNP'), ('.', '.')]

Tagging accuracies:

-------------------

Affix tagger: xx.yy%

Unigram tagger: xx.yy%

Bigram tagger: xx.yy%

Trigram tagger: xx.yy%

Tagging accuracies with backoff:

--------------------------------

Affix tagger: xx.yy%

Unigram tagger: xx.yy%

Bigram tagger: xx.yy%

Trigram tagger: xx.yy%

Accuracy of the main tagger in NLTK: xx.yy%

3 IceNLP: Hidden Markov Model (HMM) tagging � 25%

In this part, you experiment with a HMM tagger, TriTagger, the trigram tagger which is part of the IceNLP toolkit.
Before you start experimenting with the tagger, you need to do the following:

1. Read the paper �TnT � A Statistical Part-of-Speech Tagger�4 � TriTagger is a re-implementation of the TnT
tagger.

2. Download the latest version of IceNLP from http://sourceforge.net/projects/icenlp/files/, and ex-
tract to a directory of your choice.

3. Read the section on TriTagger in the user manual IceNLP.pdf (available in the /doc directory of the IceNLP
distribution) to become familiar with how to train and run the tagger.

4. Extract the training corpus penn.train.txt and the test corpus penn.test.txt from http://http://www.ru.is/

~hrafn/courses/nlp/ifdpenn.zip. These corpora are the same as used for training and testing in Section 2.
The test corpus (as well as the training corpus), contains both the tokens and tags. When running TriTagger
on the test data, you need to supply it with a �le containing only the tokens. You can easily generate this
test �le, penn.test.tokens.txt, from penn.test.txt by using awk.

Now you should be ready to train and test TriTagger (make sure that all �les used by the tagger are UTF-8
encoded). Make a shell script, triTagger.sh, which performs the following:

3You need to install the numpy module for running this tagger.
4http://aclweb.org/anthology/A/A00/A00-1031.pdf

3



1. Builds a training model using penn.train.txt for training.

2. Uses TriTagger to tag the �le penn.test.tokens.txt and writes the output to the �le penn.tritagger.out.

3. Computes the accuracy of TriTagger for the given test set. Use Unix/Linux tools to help you derive the
accuracy �gure (unless you want to do it by hand!). You could do the following:

(a) Use sed to remove empty lines from both the gold standard (penn.test.txt) and penn.tritagger.out.

(b) Use awk to extract only the �rst two columns from the output of the tagger.

(c) Use wc to count the number of tokens in the test.

(d) Use di� (using parameters -y and �suppress-common-lines) and wc to �nd the di�erences between the
gold standard and the output of the tagger.

(e) Use bc to perform the �nal calculation for the accuracy.

Hint: To assign the output of a command into a variable in a Linux bash shell: variableName=$(command)

If everything works correctly, the accuracy �gure for TriTagger on this test set is much higher than the
accuracy of the trigram tagger in Section 2. Explain the reason for this.

4 CKY Parsing � 25%

Consider the following PCFG grammar:

S -> NP VP [1.0]

NP -> DET N [0.8]

NP -> NP PP [0.2]

VP -> V NP [0.4]

VP -> VP PP [0.6]

PP -> P NP [1.0]

DET -> the [0.8]

DET -> a [0.2]

N -> student [0.55}

N -> book [0.25]

N -> library [0.2]

V -> reads [1.0]

P -> in [1.0]

1. Parse, by hand, the sentence �the student reads a book in the library�, using the given grammar and the
CKY parsing algorithm. This means that you need to show the resulting parsing table as in Figure 13.12.

the student reads a book in the library
DET 0.2

N 0.55
. . .

You will notice that there are two possible parse trees. Calculate the probabilities of each constitutent in the
table and thereby show which parse tree will be selected when using a probabilistic CKY parser.

2. Use a ChartParser in the NLTK to parse the sentence above given the grammar. Verify that the parser
produces two parse trees.

Return a Python program, parsing.py, which sets up the grammar, parses the sentence, and prints out the
two parsing trees.

4



5 What to return

1. Three Python programs: ifd.py, tagging.py, and parsing.py. Make sure you use functions (where appro-
priate) for speci�c tasks in your Python code, thus minimizing the duplication of code.

2. The shell script triTagger.sh and the output generated by this script.

3. A �le (e.g. .pdf or .txt �le), which contains: i) answers to the two questions posed in the assignment (one
question in Section 2 and another in Section 3), and ii) the CKY parsing table, and the two parse trees from
Section 4.

5


