
Natural Language Processing � Assignment I

Reykjavik University � School of Computer Science

September 2015

1 grep and sed � 16%

In this part, you process the corpus eng.sent1 using the Linux regular expression tools grep and sed. This corpus
contains one English sentence per line where each word is tagged with a part-of-speech (PoS) tag. The tagset used is
the Penn Treebank tagset (see http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.
html).

For each item below, show the exact command that you use.

1. (10%) Use grep or egrep to display information from eng.sent that match certain patterns. Note: The web
page http://www.uccs.edu/~ahitchco/grep/ should help.

(a) Display all sentences that include the exact word forms �German� and �car� (not necessarily adjacent,
but in that order).

(b) Display the number of sentences that include the exact word form �tennis�.

(c) Display plural English nouns (not proper nouns) of length 12. Here we don't want the whole line, only
the nouns in question.

(d) Display all sentences that start with a Wh-pronoun.

(e) Display all sentences that include the exact word form �o�er�, either as a verb or as a noun, and either
preceded by a word tagged as �DT� or a word tagged as �TO�.

2. (6%) Use sed to perform the following tasks on eng.sent and write the output to eng.out. Note: The web
page http://www.grymoire.com/Unix/Sed.html should help.

(a) Substitute a number at the beginning of a line with the number itself sourrounded by brackets (e.g.
123 becomes [123]).

(b) Make each <token,tag> pair appear on a separate line. For example, the �rst three lines in eng.out
should appear as:

EU NNP

rejects VBZ

German JJ

(c) Remove the PoS-tags such that only the tokens remain. For example, the �rst line in eng.out should
look like this:

EU rejects German call to boycott British lamb .

1This is a Reuters corpus, available from http://www.ru.is/~hrafn/Data/eng.zip. Due to copyright reasons, please make sure

you do not distribute this corpus.

1



2 Python � 34%

This part consists of two Python programs.

1. (16%) Write a Python program, corpusAnalysis.py, which prints out various statistics/information about a
given text �le, which is a part of the gutenberg corpus. The name of the text �le is given as a parameter to
the program, i.e.

python corpusAnalysis.py edgeworth-parents.txt

The program should print out the following information for the given text �le:

Text: edgeworth-parents.txt

Tokens: 210663

Types: 9593

Types excluding stop words: 9466

10 most common tokens: [(',', 15219), ('the', 7149), ('.', 6945), ('to', 5150), ('and', 4769),

('"', 3880), ('of', 3730), ('I', 3656), ("'", 3293), ('a', 3017)]

Long types: ['incomprehensible', 'indiscriminately', 'contradistinction', 'misunderstanding']

Adjectives ending in 'uous' ['conspicuous', 'ingenuous', 'assiduous', 'contemptuous',

'presumptuous']

Note: Long types are those with more than 15 characters.

Return your program code (.py �le) along with the output of your program when running against the �le
austen-emma.txt.

2. (18%) Write a Python program, �ndLongest.py, accepting a text �le as an argument. The program �nds the
longest lower case word in the �le and prints it out along with its length. Note that the program should work
for any text �le, regardless of its format (i.e. whether the �le has one word per line or multiple words per
line). To invoke the program the user should type in:

python findLongest.py <filename>

Note: Use NLTK for tokenizing the input. The amount of code that you have to write is about 15 lines (or
less).

Test your program on the corpus eng.sent and return your program code (.py �le) along with the output of
your program when running against this corpus.

3 JFlex/Tokenisation � 22%

In this part, you develop a tokeniser for a natural language of your choice. Indeed, it would be best if
your tokenizer could handle a family of languages (instead of a single language), for example some of the
Germanic languages like English, German, Icelandic, Danish and Swedish. With language independence in
mind, regular expressions for matching abbreviations are preferred to an implementation using a list of known
abbreviations.

You need to use JFlex as the implementation languages and name your .�ex �le as tokeniser.�ex. Implement
a shell script called tokenise.sh (or tokenise.bat) for the user to start when executing your tokeniser (the shell
script then calls the resulting Java program). The shell script should accept two parameters: the name of
the input �le and the name of the output �le:

tokenise.sh input.txt output.txt

The input �le is a text �le with a �free format�, i.e. the �le can contain one sentence per line, many sentences
per line, one token per line, several tokens per line, etc. The output �le should contain one token per line.

2



3.1 Testing and what to return

Your goal should be to develop a tokeniser which is reasonably accurate, but it does not have to be perfect
(which indeed is a di�cult task!).

For testing you should gather text in your own language (and related languages) from the web, for example,
text from newspapers, personal pages, university pages, etc. The text should contain at least 10,000 tokens
and make sure that it contains di�erent types of tokens, e.g. words, personal names, numbers and
abbreviations. To start with you can use the attached test �le smallTestDataForTokeniser.txt

Brie�y discuss what problems you see with your tokeniser.

You need to return your program code (the .�ex �le), your test �le (.txt �le) and the output generated by
your tokeniser (.txt �le) when processing the test �le.

4 Language Modeling � 28%

In this part, you develop an English trigram language model based on eng.sent by only using Linux tools:
sed, awk, head, tail, paste, sort, uniq, wc. Note that here we are only interested in word (token)
trigrams (including punctuations), not PoS trigrams.

(a) (6%) eng.sent is pre-tokenised even though the <token,tag> pairs do not appear on a separate line.
However, in order to construct the language model you need a �le with one token (word) per line without
any empty lines. Show the sequence of command that you use for constructing this �le, eng.tok.

(b) (8%) Show the sequence of commands you use to construct a trigram frequency �le engTri.freq2 (from
eng.tok), sorted in descended order of frequency.

(c) (2%) Show the command you use for displaying the 10 most frequent trigrams from engTri.freq, as well
as the output from this command.

(d) (6%) How many trigrams and distinct trigrams exists in eng.sent? Use awk and wc and engTri.freq to
�gure this out (show your commands and the output).

(e) (6%) Use the data from engTri.freq to estimate (using Maximum Likelihood Estimation):

P(said on Monday | said on)

Show which lines from engTri.freq you use to estimate this probability and your calculations.

2Containing four columns: frequency, word1, word2, word3.

3


