T-(538|725)-MALV, Natural Language Processing
PoS tagging – with rules

Hrafn Loftsson¹ Hannes Högni Vilhjálmsson¹

¹School of Computer Science, Reykjavik University

October 2010
1. PoS tagging

2. Accuracy in PoS tagging

3. Type of taggers

4. Linguistic rule-based taggers

5. A tagger which learns rules
1 PoS tagging

2 Accuracy in PoS tagging

3 Type of taggers

4 Linguistic rule-based taggers

5 A tagger which learns rules
What is PoS tagging (í. mörkun)?

A definition

- To label (í. marka) each word in a text with the appropriate word class (í. orðflokkur) and morphological features (í. beygingarleg einkenni).
- The string used as a label is called a tag (í. mark).

Why is this difficult?

- Some words are ambiguous (í. margræð).
 - A tagger is sometimes called a disambiguator, since it performs ambiguity resolution (í. einræðing).
- When looking up a word in a dictionary or performing morphological analysis ⇒ more than one tag (analysis) for the word is possible.
The tag for a word gives important information about the word and its neighbors.

- “You shall know a word by the company it keeps” (Firth, 1957)
- For example, the gender, number and case of an adjective signify comparable features for the following noun.

- Helps with speech synthesis.
 - OBject (noun) vs. obJECT (verb)

- The base for grammar checking, machine translation, parsing.

- Used in the construction of annotated corpora.
PoS tagging

Tagset

- A tagset (í. markamengi) is the set of all possible tags (labels).
- Different languages have different tagsets.
- The same language can have more than one tagset.
- **Icelandic**: *The Icelandic Frequency Dictionary (Íslensk orðtíðnibók)* – 700 tags.
- **English**: *Penn TreeBank*: 45 tags, *Brown Corpus*: 87 tags.
- **Swedish**: *Parole*: 139 tags.
- **Czech**: 1000-2000 tags.
Full disambiguation (í. full einræðing)

- A single tag is assigned to each word (token).
- The most common method, but ...
- ...sometimes a tagger cannot perform full disambiguation.
- In that case, the tagger returns a set of possible tags for a given word.
Penn Treebank tagset: http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

- The *back* door = JJ
- On my *back* = NN
- Win the voters *back* = RB
- Promised to *back* the bill = VB
Example: Icelandic PoS tagging

“Gamli maðurinn borðar kalda súpu með mjög góðri lyst” (Old man-the eats cold soup with very good appetite)

- **gamli** lkenvf
- **maðurinn** nkeng
- **borðar** sfg3en_sfg2en
- **kalda** lveosf_lkfosf_lkeovf_lkeþvf_lkeevf_lvenvf_lhenvf_lheovf_lheþvf_lheevf
- **súpu** nveo_nveþ_nvee
- **með** aþ_aa
- **mjög** aa
- **góðri** lveþsf
- **lyst** nven_nveo_nveþ
Icelandic PoS tagging – disambiguation

“Gamli maðurinn borðar kalda núpu með mjög góðri lyst”

<table>
<thead>
<tr>
<th>Word</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamli</td>
<td>1kenvf</td>
</tr>
<tr>
<td>maðurinn</td>
<td>nkeng</td>
</tr>
<tr>
<td>borðar</td>
<td>sfg3en</td>
</tr>
<tr>
<td>kalda</td>
<td>lveosf</td>
</tr>
<tr>
<td>núpu</td>
<td>nveo</td>
</tr>
<tr>
<td>mjög</td>
<td>aþ</td>
</tr>
<tr>
<td>góðri</td>
<td>lveþpsf</td>
</tr>
<tr>
<td>lyst</td>
<td>nveþ</td>
</tr>
</tbody>
</table>
In a research for English and French: 50-60% of tokens have only one possible tag, 15-25% have only two possible tags.

Assigning the most frequent tag for a word yields more than 75% accuracy.

This is called *base tagging* (í. grunnmörkun)

Charniak (1993) has obtained more than 90% accuracy by applying base tagging for English.

Note that the underlying tagset plays an important role here.
In the Icelandic Frequency Dictionary (IFD):

- Unambiguous word forms: 84.16%
- Ambiguous word forms: 15.84%
- Ambiguous word forms with 2 tags: 11.07%
- Ambiguous word forms with 3 tags: 2.96%
- Ambiguous word forms with 4 tags: 0.97%

Which words are ambiguous?

- Usually the most common words, the function words.
Baseline tagging

Common words and their tags in the IFD

<table>
<thead>
<tr>
<th>Count</th>
<th>Word</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>33181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22176</td>
<td>og</td>
<td>c</td>
</tr>
<tr>
<td>22083</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>21011</td>
<td>að</td>
<td>cn_c_aþ_aa</td>
</tr>
<tr>
<td>15319</td>
<td>í</td>
<td>aþ_ao_aa</td>
</tr>
<tr>
<td>12450</td>
<td>á</td>
<td>aþ_ao_sfg1en_sfg3en_aa_nven_nveo_nveþ_au</td>
</tr>
<tr>
<td>8040</td>
<td>hann</td>
<td>fpken_fpkeo</td>
</tr>
<tr>
<td>7905</td>
<td>var</td>
<td>sfg3eþ_sfg1eþ_lkensf</td>
</tr>
<tr>
<td>7676</td>
<td>sem</td>
<td>ct_c_aa_sfg1en</td>
</tr>
<tr>
<td>6357</td>
<td>er</td>
<td>sfg3en_sfg1en_ct_c</td>
</tr>
</tbody>
</table>
Outline

1. PoS tagging

2. Accuracy in PoS tagging

3. Type of taggers

4. Linguistic rule-based taggers

5. A tagger which learns rules
Measuring the accuracy

Full disambiguation

$$\text{accuracy (Í. hittni)} = \frac{\# \text{ correctly tagged tokens}}{\text{total number of tokens}}$$ (1)

Not full disambiguation

Precision

$$\text{precision} = \frac{\# \text{ correct tags generated by the tagger}}{\text{total number of tags generated by the tagger}}$$ (2)

Recall

$$\text{recall} = \frac{\# \text{ correct tags generated by the tagger}}{\text{total number of correct tags}}$$ (3)

Ambiguity rate

$$\text{ambiguity rate} = \frac{\# \text{ tags generated by tagger}}{\text{total number of tokens}}$$ (4)
Measuring the accuracy

Example: 100 tokens

- A tagger performs full disambiguation and correctly tags 95 tokens. ⇒ accuracy = 95/100 = 95%
- A tagger doesn’t perform full disambiguation and returns 105 tags, of which 95 are correct.
 - ⇒ precision = 95/105 = 90.5%
 - ⇒ recall = 95/100 = 95.0%
 - ⇒ ambiguity rate = 105/100 = 1.05

Note that when full disambiguation is applied then accuracy=precision=recall and ambiguity rate=1.0.

- Icelandic terms: precision=nákvæmni, recall=griphlutfall, ambiguity rate=margræðnihlutfall
Accuracy in PoS tagging

What can affect the accuracy?

- The type of tagger – the quality of the language model.
- The size of the tagset.
- The ratio of unknown words.
 - The possible tags for unknown words are not known!
 - An *unknown word guesser* is needed.
- The size of the training corpus.
- The type of the test corpus.
Accuracy in PoS tagging

- **English:**
 - 96.7% (Brants, 2000)
 - Ratio of unknown words: 2.9%
 - Training corpus: 1,000,000 words.
 - Tagset: 45 tags (Penn TreeBank).

- **Swedish:**
 - 93.6% (Megyesi, 2002)
 - Ratio of unknown words: 15.0%
 - Training corpus: 100,000 words.
 - Tagset: 139 tags.

- **Icelandic:**
 - 92.5% (Loftsson et al., 2009)
 - Ratio of unknown words: 6.8%
 - Development corpus: 59,000 words.
 - Tagset: 700 tags.
Outline

1. PoS tagging
2. Accuracy in PoS tagging
3. Type of taggers
4. Linguistic rule-based taggers
5. A tagger which learns rules
Type of taggers

Rules vs. statistics

- Rules use the context of a word to eliminate or change a particular tag.
- Rules can be hand-written or learned in a data-driven manner from a tagged corpus.
- Statistical methods are used to assign words in a sentence the most likely tag sequence.
- Statistical methods use frequency information (e.g. n-grams) which are derived from a tagged corpus.
Type of taggers

Linguistic rule-based taggers (í. málfræðilegir reglumarkarar)

- Are based on hand-written linguistic rules.
- Only used to tag a particular language using a specific tagset.

Data-driven taggers (í. gagnamarkarar)

- Language and tagset independent.
- Use PoS tagged corpora to automatically collect information which is later used for disambiguation of new texts.
- This information can, for example, be in the form of statistics or rules.
Outline

1. PoS tagging
2. Accuracy in PoS tagging
3. Type of taggers
4. Linguistic rule-based taggers
5. A tagger which learns rules
Linguistic rule-based taggers

Typical functionality

1. Each word is assigned its *tag profile*, the set of possible tags for that word
 - Using a dictionary, or a morphological analyser, and/or an unknown word guesser.

2. Disambiguation using rules
 - Inappropriate tags eliminated with regard to context (reductionist approach)
Typical functionality

Use rules about the nature of sentences and phrases to tags the words.

- A preposition does (usually) not appear before a verb
 - The word *fórum* is a noun in the context *í fórum mínun*.

- A possessive pronoun agrees with the following noun in gender, number and case.
 - In the context *hesta þinna* (horses yours), the word *þinna* is unambiguously genitive case and therefore the word *hesta* is also genitive, but not accusative.
Linguistic rule-based taggers

Constraint Grammar Framework (Fred Karlsson 1990)

- A morphological analyser (based on two-level morphology) returns all possible analysis for each word.
- Rules (constraints) are written to eliminate tags with regard to context.
- Often thousands of rules, e.g. EngCG-2 with 3,600 rules.
- Time-consuming but recall is high. Does not perform full disambiguation for all words.
- Samuelsson and Voutilainen (1997):
 - Recall: 99.6%
 - Ambiguity rate: 1.02.
- Demo: http://www2.lingsoft.fi/cgi-bin/engcg
Linguistic rule-based taggers

IceTagger - Hrafn Loftsson

- **Unknown word guesser:** *IceMorphy*
- **Local rules**
 - About 175 rules.
 - Eliminate a specific tag in a particular context.
 - The local context is 5 words.
- **Global rules**
 - Heuristics (í. leitaraðferðir)
 - Guess the syntactic functions of words (subject, verb, object).
 - Mark preposition phrases.
 - Use the above to force feature agreement.
Full disambiguation

- The most frequent tag for a word is selected if a word is still ambiguous after the application of local and global rules.
- *IceTagger* is thus a combination of a linguistic rule-based tagger and a base tagger.

Test

- http://nlp.cs.ru.is and select *IceNLP.*
Outline

1. PoS tagging
2. Accuracy in PoS tagging
3. Type of taggers
4. Linguistic rule-based taggers
5. A tagger which learns rules
A tagger which learns rules

Brill’s tagger (Eric Brill 1992)

- A data-driven tagger.
- Learns rules in training which change one tag to another.
 - ⇒ “Transformation-based learning”
- A dictionary is derived from the training corpus.
 - Keeps track of the most frequent tag for a word.
Brill’s tagger

Functionality

- Initially, assigns the most frequent tag to each word (base tagging)
- Applies a list of rules (transformations) to change the initial tagging.
- The rules are applied in a specific order and each transformation is applied on the text from left to right.
- An example for English:
 - “The can rusted”
 - With the most likely tag: The/art can/modal rusted/verb.
 - Rule: *Change the tag from modal to noun if the previous word is an article.*
 - Result: The/art can/noun rusted/verb.
Brill’s tagger

How are the rules derived?

- Rules are based on templates.
- The templates restrict the type of rules that can be generated.
- Example template:
 \[
 \text{alter}(A, B, \text{prevtag}(C)) \quad \text{Change } A \text{ to } B \text{ if preceding tag is } C.
 \]
 \[
 \text{alter}(A, B, \text{nextbigram}(C,D)) \quad \text{Change } A \text{ to } B \text{ if next bigram tag is } C \text{ } D.
 \]
- Brill used 11 templates for English, which resulted in about 500 rules, sufficient for achieving about 97% accuracy.
Brill’s tagger – The training algorithm

<table>
<thead>
<tr>
<th>St.</th>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Base tagging</td>
<td>Corpus</td>
<td>Corpus(1)</td>
</tr>
<tr>
<td>2.</td>
<td>Compare PoS of each word in
Gold standard and Corpus(i)</td>
<td>Gold standard
Corpus(i)</td>
<td>List of errors</td>
</tr>
<tr>
<td>3.</td>
<td>For each error, instantiate the rule
templates to correct the error</td>
<td>List of errors</td>
<td>List of tentative rules</td>
</tr>
<tr>
<td>4.</td>
<td>For each rule, compute on Corpus(i)
of good transf. - # of bad transf.</td>
<td>Corpus(i)
Tentative rules</td>
<td>Scored tentative rules</td>
</tr>
<tr>
<td>5.</td>
<td>Select the rule that has the greatest
error reduction and append it to the
ordered list of tranformations</td>
<td>Tentative rules</td>
<td>Rule(i)</td>
</tr>
<tr>
<td>6.</td>
<td>Apply Rule(i) to Corpus(i)</td>
<td>Corpus(i)
Rule(i)</td>
<td>Corpus(i+1)</td>
</tr>
<tr>
<td>7.</td>
<td>If number of errors < δ exit
else go to step 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brill’s tagger – Example of rules for known words

Training on the Icelandic Frequency Dictionary

- **GOOD**: 1505 **BAD**: 9 **SCORE**: 1496 **RULE**: pos_0=sfg3eþ
 pos:[-2,-1]=fp1en ⇒ pos=sfg1eþ
 - Change tag *sfg3eþ* to *sfg1eþ* if one of the two previous tags is *fp1en*.
 - This rule corrected 1505 errors in the initial tagging.

- **GOOD**: 836 **BAD**: 38 **SCORE**: 798 **RULE**: pos_0=aþ
 pos:[1,2]=nkeog ⇒ pos=ao

- **GOOD**: 563 **BAD**: 20 **SCORE**: 543 **RULE**: pos_0=aþ
 pos:[1,2]=nveog ⇒ pos=ao
Unknown words

- Labels unknown words as proper nouns if they start with a capital letter.
- Labels all other unknown words as common nouns.
- Then applies special templates (see page 155 in the textbook) for generating rules which change the tag of an unknown word from X to Y.
Training on the Icelandic Frequency Dictionary

- **GOOD:** 558 **BAD:** 3 **SCORE:** 555 **RULE:** pos=nken

 word:～～1＝～～a ⇒ pos=sng

 - Change tag **nken** to **sng** if the last letter of the word is “a”.
 - This rule corrected 558 errors in the initial tagging but only added 3 errors.

- **GOOD:** 438 **BAD:** 6 **SCORE:** 432 **RULE:** pos=nken

 word:～～3＝～～nni ⇒ pos=nveþg

- **GOOD:** 275 **BAD:** 4 **SCORE:** 271 **RULE:** pos=nheþ

 word:～～3＝～～aði ⇒ pos=sfg3eþ