T-(538|725)-MALV, Natural Language Processing Semantics

Hrafn Loftsson¹ Hannes Högni Vilhjálmsson¹

¹School of Computer Science, Reykjavik University

November 2010
Outline

1. Semantics

2. Lambda calculus

3. First-Order Predicate Calculus
Outline

1. Semantics
2. Lambda calculus
3. First-Order Predicate Calculus
Formal semantics

- Assumes that logic can model language, and, by extension, human thought.
- Formal semantics techniques attempt to map sentences onto logical forms (formulas).
- The logical form can then be used, for example, to determine if a given statement is true or false.
In some cases, the logical form can be obtained simultaneously while parsing.

Based on the *Principle of compositionality*:

- Assumes that it is possible to compose the meaning of a sentence from the meaning of its parts.
Outline

1. Semantics
2. Lambda calculus
3. First-Order Predicate Calculus
What is it?

- A formal system designed to investigate function definition, function application and recursion – Church (1941)
- http://en.wikipedia.org/wiki/Lambda_calculus
- We can use lambda calculus to map constituents to \(\lambda \)-expressions (functions).

Example

- “is a waiter” = \(\lambda x.\text{waiter}(x) \) (called a \(\lambda \)-abstraction)
- \(\lambda x.\text{waiter}(x)(\text{Bill}) = \text{waiter}(\text{Bill}) \) (called \(\beta \)-reduction or function application)
We can imitate lambda calculus in Prolog.
We put λ-expressions into the DCG rules.
The semantic representation is then constructed while we parse.
It is common to make $X^\text{waiter}(X)$ stand for $\lambda x.\text{waiter}(x)$
Let’s consider Prolog code which can derive semantic structure for sentences like:
- *Mark is a waiter* (Example 1) . . .
- . . . but first without any semantic analysis (Example 0)
- and *Mr. Schmidt called Bill* (Example 2)
s --> np, vp.
vp --> verb, np.

np --> ['Bill'].
np --> ['Mark'].
np --> det, noun.

noun --> [waiter].
det --> [a].
verb --> [is].

?- s(['Mark', is, a, waiter], []).
Using DCG rules for compositional analysis

Embed λ-expressions into the rules

- The semantic representation of common nouns or adjectives is that of a property like $\lambda x.\text{waiter}(x)$
- Nouns incorporate their semantic representation as an argument in DCG rules:
 - $\text{noun}(X^\text{waiter}(X)) \rightarrow [\text{waiter}]$.
- “X is a waiter” is roughly equivalent to the predicate $\text{waiter}(X)$.
- The verb “be” has no real semantic content.
- The semantics of the verb phrase is then simply that of its noun phrase:
 - $\text{vp}(\text{Semantics}) \rightarrow \text{verb}, \text{np}(\text{Semantics})$.
s(Predicate) --> np(Subject), vp(Subject^Predicate).
vp(Semantics) --> verb, np(Semantics).

np('Bill') --> ['Bill'].
np('Mark') --> ['Mark'].
np(X) --> det, noun(X).

noun(X^waiter(X)) --> [waiter].
det --> [a].
verb --> [is].

?- s(S, ['Mark', is, a, waiter], []).
?- s(waiter('Bill'), L, []).
Other verbs than “be” play a role

- Bill rushed \Rightarrow rushed(’Bill’).
- *rushed* is intransitive (no object) \Rightarrow X^rushed(X).
- Mark called Bill \Rightarrow called(’Mark’,’Bill’).
- *called* is transitive \Rightarrow Y^X^called(X,Y).
 - X is the subject, Y is the object.
s(Semantics) --> np(Subject), vp(Subject^Semantics).

vp(Subject^Semantics) --> verb(Subject^Semantics).
vp(Subject^Semantics) --> verb(Object^Subject^Semantics), np(Object).

np(‘Bill’) --> [‘Bill’].
np(‘Mark’) --> [‘Mark’].

verb(X^rushed(X)) --> [rushed].
verb(Y^X^called(X,Y)) --> [called].

?- s(S, [‘Bill’, rushed], []).
?- s(S, [‘Mark’, called, ‘Bill’], []).
Outline

1 Semantics

2 Lambda calculus

3 First-Order Predicate Calculus
We may need to be able to represent the “state of the world” somehow.

- Objects, animals, people, observable facts, properties of things, etc.

It is common to use predicate-argument structures (í. umsagnar-rökliðaformgerðir)

Maps words, phrases and sentences onto symbols and structures characterising things or properties in a given context: the universe of discourse.

First-Order Predicate Calculus is a convenient tool to represent things and relations.

http://en.wikipedia.org/wiki/First_order_logic

Prolog’s base is FOPC.
Assertions are represented by terms (í. líðir)

Simple terms:
- **Constants**, e.g. 'Socrates', 'Pierre'
- **Variables**, e.g. X, Y, Z.

Compound terms:
- Stand for **predicates or relations** (í. umsagnir), e.g.:
 - `person('Pierre')`.
 - `object(table)`.
 - `on('Pierre', table)`.
Words like \textit{waiter}, \textit{patron}, \textit{yellow}, \textit{hot} are properties that we map onto predicates of arity 1 (one argument).

\[\lambda x. \text{waiter}(x) \], in Prolog: \(X^\text{waiter}(X) \)

\[\lambda x. \text{waiter}(x)(\text{Bill}) = \text{waiter}(\text{Bill}) \]

\[\lambda x. \text{hot}(x) \text{ meal}(x) \], in Prolog: \(X^{(\text{hot}(X), \text{meal}(X))} \)
Representing verbs and prepositions

Verbs like *run*, *bring* and *serve* are relations which we map onto predicates of arity 1 or 2 depending on whether they are intransitive or transitive.

- $\lambda x. \text{ran}(x)$, in Prolog: $X^\text{ran}(X)$
 - $\lambda x. \text{ran}(x)(\text{Pierre}) = \text{ran}(\text{Pierre})$
- $\lambda y \lambda x. \text{brought}(x,y)$, in Prolog: $Y^X^\text{brought}(X,Y)$
 - *Roby brought a plate*: brought(’Roby’, $Z^\text{plate}(Z)$)

Prepositions often link two noun groups:

- $Y^X^\text{with}(X, Y)$, *The table with a napkin*,
 - with($Z^\text{table}(Z)$, $T^\text{napkin}(T)$)
A waiter ran.

Every waiter ran.

The waiter ran.

These sentences have a completely different meaning, although the differ only by their determiners.

Quantifiers

- **existential quantifier**, \exists.
 - $\exists x. P$, there exists x such that P is true.

- **universal quantifier**, \forall.
 - $\forall x. P$, for all x, P is true.

- **restricted existential quantifier**, $\exists!$.
 - $\exists! x. P$, there exists exactly one x such that P is true.
Quantifiers

<table>
<thead>
<tr>
<th>Sentences</th>
<th>Logic representation</th>
</tr>
</thead>
</table>
| *A waiter ran* | $\exists x (\text{waiter}(x) \land \text{ran}(x))$ \\
| | exists(X, waiter(X), ran(X)) |
| *Every waiter ran* | $\forall x (\text{waiter}(x) \Rightarrow \text{ran}(x))$ \\
| | all(X, waiter(X), ran(X)) |
| *The waiter ran* | $\exists! x (\text{waiter}(x) \land \text{ran}(x))$ \\
| | the(X, waiter(X), ran(X)) |
Quantifiers

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Logical form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A waiter brought a meal</td>
<td>$\exists x (\text{waiter}(x) \land \exists y (\text{meal}(y) \land \text{brought}(x,y)))$</td>
</tr>
<tr>
<td>Every waiter brought a meal</td>
<td>$\forall x (\text{waiter}(x) \Rightarrow \exists y (\text{meal}(y) \land \text{brought}(x,y)))$</td>
</tr>
<tr>
<td>The waiter brought a meal</td>
<td>$\exists! x (\text{waiter}(x) \land \exists y (\text{meal}(y) \land \text{brought}(x,y)))$</td>
</tr>
</tbody>
</table>
Quantifiers

- We have problems with words like *two, three, several, many, this, that*, etc.
- Instead of using logic quantifier names, we can use the determiners themselves as functors of Prolog terms:
 - *A waiter brought a meal*
 - \(a(X, \text{waiter}(X), a(Y, \text{meal}(Y), \text{brought}(X,Y))) \)
 - *Two waiters brought our meals*
 - \(\text{two}(X, \text{waiter}(X), \text{our}(Y, \text{meal}(Y), \text{brought}(X,Y))) \)
s(Sem) --> np((X^SemRest)^Sem), vp(X^SemRest).

np((X^SemRest)^Sem) --> determiner((X^SemNP)^((X^SemRest)^Sem)), noun(X^SemNP).

vp(X^SemRest) --> verb(X^SemRest).
vp(X^SemRest) --> verb(Y^X^SemVerb), np((Y^SemVerb)^SemRest).

noun(X^waiter(X)) --> [waiter].
noun(X^patron(X)) --> [patron].
noun(X^meal(X)) --> [meal].

verb(X^rushed(X)) --> [rushed].
verb(Y^X^ordered(X,Y)) --> [ordered].
verb(Y^X^brought(X,Y)) --> [brought].

determiner((X^SemNP)^((X^SemRest)^a(X, SemNP, SemRest))) --> [a].
determiner((X^SemNP)^((X^SemRest)^the(X, SemNP, SemRest))) --> [the].

?- s(Sem, [the, patron, ordered, a, meal], []).
Sem = the(_G549, patron(_G549), a(_G576, meal(_G576), ordered(_G549, _G576)))
i.e. Sem = the(X, patron(X), a(Y, meal(Y), ordered(X, Y)))