T-(538|725)-MALV, Natural Language Processing
Regular expressions

Hrafn Loftsson¹ Hannes Högni Vilhjálmsson¹

¹School of Computer Science, Reykjavik University

September 2010
Outline

1 Strings and languages

2 Regular expressions
Outline

1. Strings and languages

2. Regular expressions
Strings

An alphabet

- A finite set of symbols or characters.
- Example: \{0,1\} is the binary alphabet.

A string

- A string \(s \) from the alphabet \(\Sigma \) is a finite sequence of characters drawn from \(\Sigma \).
- \(|s| \) denotes the length of \(s \).
- \(\epsilon \) denotes the empty string; its length is 0.
Concatenation and multiplication

- If \(x \) and \(y \) are strings then their concatenation \(xy \) is a string obtained by concatenating \(y \) to \(x \).
- \(s\epsilon = \epsilon s = s \)
- \(s^0 = \epsilon, \ s^1 = s, \ s^2 = ss, \)
- \(s^i = ss^{i-1}, \ i > 0 \)
A language

Definition

- A set of strings.
- Example: \emptyset, {ϵ}, {ab, ba}, {011, 101, 111}.

Concatenation of languages

- Concatenation of two languages A and B is the set of all strings that are formed by concatenating the strings of B at the end of the strings of A.
- We can use exponentation to denote concatenation:
 - $A^0 = \{\epsilon\}$, $A^1 = A$, $A^2 = AA$, $A^3 = AAA \ldots$
Operations on languages

- \(L \cup M = \{s \mid s \in L \text{ or } s \in M\} \)
- \(LM = \{st \mid s \in L \text{ and } t \in M\} \)
- Kleene closure: 0 or more concatenations of L
 - \(L^* = \bigcup_{i=0}^{\infty} L^i \)
- Positive closure: 1 or more concatenations of L
 - \(L^+ = \bigcup_{i=1}^{\infty} L^i \)
Examples of languages

$L = \{A, B, \ldots, Z, a, b, \ldots, z\}$ and $D = \{0, 1, \ldots, 9\}$.

What languages (set of strings) are:

- $L \cup D$
- LD
- L^4
- L^*
- $L(L \cup D)^*$
- D^+
1 Strings and languages

2 Regular expressions
A language used to describe a set of strings.

Very powerful devices to describe patterns to search for in texts.

When a particular string is in the set described by a regex, we say that the regex matches the string.

Each regular expression r denotes a language $L(r)$.

Are composed of ordinary text characters (e.g. abc) and metacharacters, e.g. “*” and “+”.

Complex regex can be constructed from simple regex using special rules.
Regular expressions

For an alphabet Σ:

1. ϵ is a regex denoting $\{\epsilon\}$.
2. If $a \in \Sigma$, then a is a regex denoting $\{a\}$.
3. Let us assume r and s are regex denoting the languages $L(r)$ and $L(s)$. Then:
 - $(r)(s)$ is a regex denoting $L(r)L(s)$.
 - $(r)\mid (s)$ is a regex denoting $L(r) \cup L(s)$.
 - $(r)^*$ is a regex denoting $(L(r))^*$.
 - (r) is a regex denoting $L(r)$.
Regular expressions

Operator precedence:

- * has the highest precedence.
- Concatenation next highest.
- | has the lowest precedence.
- Accordingly: \((a)\|(b)^*(c)\) = a\(b^*c\)
Examples of regular expressions

Which languages denote the regular expressions:

- $a|b$
- $(a|b)(a|b)$
- a^*
- $a|b^*c$
More about regular expressions

Other characters having a special meaning

In many tools which support regex the following characters have a special meaning:

- ? + . {n}
- See descriptions in table 2.9 on page 37
More about regular expressions

Character classes

- A list of characters between square brackets matches any character contained in the list.
- The regex `[abc]` means one occurrence of either `a`, or `b` or `c` (`a|b|c`).

Complement and range

- `[^a]` means any character that is not an `a`.
- `[a-zA-Z]` means `a, b, ...`, `z`, `A, B, ...`, `Z`.
Longest match

Ambiguity

- String matching can be ambiguous.
- For example, the string $s = \text{“aabbc”}$ and the regex a^+b^*
- This regex matches the following substrings of s: a, aa, ab, aab, abb, $aabb$

Disambiguation – two rules

Most tools which support regex:

- They match as early as they can in a string.
- They match as many characters as they can.

- Thus, a^+b^* matches $aabb$, the longest match.
A regex can be converted automatically to an NFA (non-deterministic FSA).
 - The method is, for example, discussed in the *Compiler* course.

An FSA can accept the set of strings which a particular regex stands for.
Various tools and programming languages

- grep/egrep (Unix/Linux tool)
 - grep ‘ab*c’ myFile
 - Prints all the lines from the file myFile containing the strings ac, abc, abbc, abbbc, etc.
 - In Windows you can install Cygwin http://www.cygwin.com/ which is a Linux-like environment for Windows.

- Support for regular expressions is in various contemporary languages, e.g. Perl, Python, Java, C#.

- Tutorial in Java: http://java.sun.com/docs/books/tutorial/essential/regex/