
T-(538|725)-MALV, Natural Language Processing
Word counting and n-grams

Hrafn Loftsson1 Hannes Högni Vilhjálmsson1

1School of Computer Science, Reykjavik University

September 2010

Loftsson, Vilhjálmsson N-grams

Outline

1 Word sequences

2 The construction of n-gram language models

3 Probabilistic models

4 Smoothing

Loftsson, Vilhjálmsson N-grams

Outline

1 Word sequences

2 The construction of n-gram language models

3 Probabilistic models

4 Smoothing

Loftsson, Vilhjálmsson N-grams

Collocations

Collocations (í. orðastæður)

A sequence of words or terms which co-occur more often than
would be expected by chance
Phrases composed of words that co-occur for lexical rather
than semantic reasons

“Heavy smoker” vs. “heavy writer”

Often it is important to find collocations, for example in the
construction of dictionaries.
Examples of collocations: “crystal clear”, “cosmetic surgery”,
“blonde hair”, “oft og tíðum”, “veikur hlekkur”.

Loftsson, Vilhjálmsson N-grams

Language models

Language model (í. mállíkan)

A probabilistic estimation for the frequency of words and word
sequences.
Often used to predict the next word when the preceeding
sequence is known.
Used in many NLP applications:

Speech recognition, PoS tagging, parsing, semantic analysis,
machine translation, etc.

Loftsson, Vilhjálmsson N-grams

Word types and tokens

Word types (í. orðmyndir)

Distinct words.
The Icelandic Frequency Dictionary (IFD) corpus contains
59,358 word types.

Word tokens (í. tókar/lesmálsorð)

All words (tokens).
The IFD corpus contains 590,297 tokens.

Loftsson, Vilhjálmsson N-grams

Word types and tokens

An example

This is a school. Anna saw the school. John saw the school.
15 tokens, 9 word types.

Loftsson, Vilhjálmsson N-grams

n-grams (í. n-stæður)

A sequence of N words (tokens).
Unigrams (í. einstæður)
Bigrams (í. tvístæður)
Trigrams (í. þrístæður)
Fourgrams (í. fjórstæður).
etc.

Loftsson, Vilhjálmsson N-grams

n-grams

This is a school.
Unigrams: “This“, “is”, “a”, “school”, “.”
Bigrams: “This is”, “is a”, “a school”, “school .”
Trigrams: “This is a”, “is a school”, “a school .”
Fourgrams: “This is a school”, “is a school .”

Loftsson, Vilhjálmsson N-grams

Outline

1 Word sequences

2 The construction of n-gram language models

3 Probabilistic models

4 Smoothing

Loftsson, Vilhjálmsson N-grams

More Unix/Linux tools

sort

Alphabetical order:
sort inputfile > outputfile (ascending order)
Sorting Icelandic text works under Linux using UTF-8 file
encoding for data

Descending order:
sort -r inputfile > outputfile

Numerical sort
sort -n inputfile > outputfile

Loftsson, Vilhjálmsson N-grams

More Unix/Linux tools

uniq

Eliminates or counts duplicate lines in a presorted file
uniq inputfile > outputfile
sort input.txt | uniq > output.txt
With frequency:

uniq -c inputfile > outputfile
Counting frequencies

sort input.txt | uniq -c | sort -nr > output.txt

Loftsson, Vilhjálmsson N-grams

The construction of n-gram language models

A unigram model

Input: A corpus.
1 Tokenisation – one word (token) per line.
2 Counting.

Easy in Unix/Linux

Let us assume that the file corpus.wrd contains one token per
line.
sort corpus.wrd | uniq -c | sort -nr > corpus.freq

Loftsson, Vilhjálmsson N-grams

Counting unigrams in Perl (cf. 4.4.3 in textbook)

use utf8; # allow UTF-8 in the program text
$file = shift(@ARGV); # get the input file name
$outfile = shift(@ARGV); # get the output file name
open(INFILE, "<:utf8", "$file"); # open the file using utf8 encoding
open(OUTFILE, ">:utf8", "$outfile"); # write using utf8 encoding

while ($line = <INFILE>) { $text .= $line}
$text =~ tr /a-záðéíóýúæöþA-ZÁÐÉÍÓÝÚÆÖÞ0-9.,()!?\-:;/\n/cs; # The not so perfect
$text =~ s/([,.?!:;()\-])/\n$1\n/g; # tokenisation step
$text =~ s/\n+/\n/g;

@words = split(/\n/, $text);
for ($i=0; $i <= $#words; $i++) {

if (!exists($frequency{$words[$i]})) {$frequency{$words[$i]} = 1;}
else {$frequency{$words[$i]}++;}

}

foreach $word (sort keys %frequency) {
print OUTFILE "$frequency{$word} $word\n";

}

Loftsson, Vilhjálmsson N-grams

More Unix/Linux tools

head og tail

head -3 < input.txt
Returns the first three lines.

tail -2 < input.txt
Returns the last two lines.

tail +2 < input.txt
If this does not work, then tail --lines=+2 < input.txt

Skips the first line.

Loftsson, Vilhjálmsson N-grams

The construction of n-gram language models

A bigram model

Input: A corpus.
1 Tokenisation – one word (token) per line.
2 Construct bigrams: Print out wordi and wordi+1 in the same

line.
3 Counting.

Easy in Unix/Linux

Let us assume that the file corpus.wrd contains one token per
line.
tail --lines=+2 < corpus.wrd > corpus2.wrd

paste corpus.wrd corpus2.wrd > corpus.bigrams
sort corpus.bigrams | uniq -c | sort -nr > corpus.freq

Loftsson, Vilhjálmsson N-grams

A bigram model in Perl (cf. 4.4.4 in textbook)

use utf8; # allow UTF-8 in the program text
$file = shift(@ARGV); $outfile = shift(@ARGV); # get the output file name
open(INFILE, "<:utf8", "$file"); open(OUTFILE, ">:utf8", "$outfile");

while ($line = <INFILE>) { $text .= $line}
$text =~ tr /a-záðéíóýúæöþA-ZÁÐÉÍÓÝÚÆÖÞ0-9().,!?\-:;/\n/cs;
$text =~ s/([,.?!:;()\-])/\n$1\n/g;
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);

for ($i=0; $i<$#words; $i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i+1]; }

for ($i=0; $i <= $#bigrams; $i++) {
if (!exists($frequency{$bigrams[$i]})) {$frequency{$bigrams[$i]} = 1;}
else {$frequency{$bigrams[$i]}++;}

}
foreach $bigram (sort keys %frequency) {

print OUTFILE "$frequency{$bigram} $bigram\n";
}

Loftsson, Vilhjálmsson N-grams

Outline

1 Word sequences

2 The construction of n-gram language models

3 Probabilistic models

4 Smoothing

Loftsson, Vilhjálmsson N-grams

Probabilistic models of a word sequence

Maximum likelihood estimation (í. Sennileikalíkur)

Let S = w1,w2, . . . ,wn be a word sequence.
By using a (training) corpus M, we can estimate the
probability of this sequence.
P(S) is the relative frequency of the string S in M.
P(S) is called the maximum likelihood estimate (MLE) for S:

PMLE (S) =
C (w1,w2, . . . ,wn)

N
(1)

N is the total number of strings of length n in M.

Loftsson, Vilhjálmsson N-grams

Probabilistic models of a word sequence

Maximum likelihood estimation

Most of the time, it is impossible to obtain this estimate,
because the size of a corpus is finite!
We thus simplify (1) and decompose it:

P(S) = P(w1,w2, . . . ,wn)

= P(w1)P(w2|w1)P(w3|w1,w2) . . .P(wn|w1, . . . ,wn−1),

=
n∏

i=1

P(wi |w1, . . . ,wi−1)

Loftsson, Vilhjálmsson N-grams

Probabilistic models of a word sequence

The length of the n-grams needs to be limited

P(It was a bright cold day in April)
P(S) = P(It) * P(was|It) * P(a | It, was) * P(bright | It, was,
a) . . . * P(April | It, was, a, bright . . . , in)
In this example, we even need 8-gram statistics. No corpus is
big enough to produce them. We thus approximate these
probabilities (using the Markov assumption) with bigrams or
trigrams:

P(wi |w1, . . . ,wi−1) ≈ P(wi |wi−1) (2)

P(wi |w1, . . . ,wi−1) ≈ P(wi |wi−2,wi−1) (3)

Loftsson, Vilhjálmsson N-grams

Probabilistic models of a word sequence

The probability of a sentence using bigrams and trigrams

Bigrams : P(S) = P(w1)
n∏

i=2

P(wi |wi−1)

P(wi |wi−1) = PMLE (wi |wi−1) =
C (wi−1,wi)

C (wi−1)

Trigrams : P(S) = P(w1)P(w2|w1)
n∏

i=3

P(wi |wi−2,wi−1)

P(wi |wi−2,wi−1) = PMLE (wi |wi−2,wi−1) =
C (wi−2,wi−1,wi)

C (wi−2,wi−1)

Loftsson, Vilhjálmsson N-grams

Training, developing and testing

Different kind of usage

Training corpus (í. þjálfunarmálheild):
A corpus used to derive the n-gram frequencies (the language
model).

Test corpus (í. prófunarmálheild):
The corpus on which we apply the model.

Development corpus (í. þróunarmálheild):
A corpus used to fine-tune some parameters used by the model.

All the three corpora need to be distinct.

Loftsson, Vilhjálmsson N-grams

n–fold cross-validation

A corpus divided randomly into two parts, a training corpus
and a test corpus.
The language model trained using the training corpus and the
model applied on the test corpus.
Repeated n-times, each time with a new random division.
Results are averaged.
Called 10–fold cross-validation when n = 10.
Results are not dependent on one specific division between
training and test sets.

Loftsson, Vilhjálmsson N-grams

Vocabulary

Words, which are not part of the language model (i.e. have not
been encountered during training), will appear during testing.
Why is that almost certain?
These words are called unknown or out-of-vocabulary (OOV)
words.
Moreover, the estimated frequency of unknown words is not
very reliable.
Two approaches for handling unknown words:

Closed vocabulary. Unknown words discarded.
Open vocabulary. Unknown words handled in a specific
manner, e.g. using smoothing.

Loftsson, Vilhjálmsson N-grams

Sparse data (í. naum gögn)

Language models are derived from corpora which are not large
enough to produce reliable frequencies for all possible bigrams
and trigrams.
Given a vocabulary of 20,000 word types:

Bigrams: 20, 0002 = 400, 000, 000
Trigrams: 20, 0003 = 8, 000, 000, 000, 000

Training data is thus sparse. Many n-grams will get the
probability 0, which is not realistic (see an example on page
99).
The MLE method gives no hint how to estimate probabilities
for unseen n-grams.
⇒ Smoothing (í. sléttun)

Loftsson, Vilhjálmsson N-grams

Outline

1 Word sequences

2 The construction of n-gram language models

3 Probabilistic models

4 Smoothing

Loftsson, Vilhjálmsson N-grams

Smoothing

Laplace’s Rule (1820)

Simply adds one to all frequencies.
⇒ “the add one method”.
The frequency of unseen n-grams is thus 1.

PLaplace(wi+1|wi) =
C (wi ,wi+1) + 1

C (wi) + Card(V)

Card(V) is the number of word types.

Loftsson, Vilhjálmsson N-grams

Smoothing – table page 100

wi ,wi+1 C(wi ,wi+1) C(wi) + Card(V) PLap(wi+1|wi)
<s>a 133 7072 + 8634 0.008500
a good 14 2482 + 8634 0.001300
good deal 0 53 + 8634 0.000120
deal of 1 5 + 8634 0.000230
of the 742 3310 + 8634 0.062000
the literature 1 6248 + 8634 0.000130
literature of 3 7 + 8634 0.000460
of the 742 3310 + 8634 0.062000
the past 70 6248 + 8634 0.004800
past was 4 99 + 8634 0.000570
was indeed 0 2211 + 8634 0.000092
indeed already 0 17 + 8634 0.000120
already being 0 64 + 8634 0.000110
. . .
this way 3 264 + 8634 0.000450

Table: Frequencies of bigrams using Laplace’s rule

Loftsson, Vilhjálmsson N-grams

Smoothing

Drawback

Unseen n-grams receive an enormous mass of probabilities
The unlikely bigram the of gets the frequency 1, one fourth of
the frequency of the (common) bigram this way.

Discount factor is the ratio between the MLE frequencies and
the smoothed frequencies. This factor is often too high when
Laplace’s rule is used.
Example:

According to the language model, the MLE probability for this
way is = 3

264 = 0.0114. After smoothing, the probability is
0.00045.
Discount factor is: 0.0114

0.00045 = 24.4.
The MLE probability for this bigram has been discounted by
24.4 (to make place for the unseen bigrams).

Loftsson, Vilhjálmsson N-grams

Smoothing

Good-Turing estimation (1953)

One of the most efficient smoothing methods.
It reestimates the counts of n-grams observerd in the corpus
by discounting them, and shifts probability mass it has shaved
to the unseen bigrams (as Laplace’s rule).
However, the discount factor is variable, and depends on the
number of times a n-gram has occurred in the corpus.

Definition

Let Nc be the number of n-grams that occurred exactly c
times in the corpus.
N0 is the number of unseen n-grams, N1 is the number of
n-grams seen once, etc.

Loftsson, Vilhjálmsson N-grams

Good-Turing

Reestimates the frequency of n-grams occurring c times, with
the formula:

c∗ = (c + 1)
Nc+1

Nc

For unseen n-grams: c∗ = N1
N0

For n-grams occurring once: c∗ = 2∗N2
N1

For n-grams occurring twice: c∗ = 3∗N3
N2

The conditional frequency is:

PGT (wn|w1, . . . ,wn−1) =
c∗(w1, . . . ,wn)

C (w1, . . . ,wn−1)

Loftsson, Vilhjálmsson N-grams

Good-Turing – table page 102

Frequency of occurrence Nc c*
0 74.523.701 0.0005
1 37.365 0.31
2 5.820 1.09
3 2.111 2.02
4 1.067 3.37
5 719 3.91
6 468 4.94
. . .

Table: The reestimated frequencies of the bigrams using Good-Turing
smoothing.

Note that the reestimated frequency of bigrams not seen during
training is only 0.0005.

Loftsson, Vilhjálmsson N-grams

Linear interpolation

Linear interpolation = Deleted interpolation
Combines linearly the MLE of length 1 to n.
The estimation of each unseen n-gram depends on the exact
words comprising the n-gram.
For trigrams:
PDelInterpolation(wn|wn−2,wn−1) =
λ1PMLE (wn|wn−2,wn−1)+
λ2PMLE (wn|wn−1) + λ3PMLE (wn)

where 0 ≤ λi ≤ 1 and
∑3

i=1 λi = 1
The λi can be trained and optimised from a corpus.

Loftsson, Vilhjálmsson N-grams

	Word sequences
	The construction of n-gram language models
	Probabilistic models
	Smoothing

