T-(538|725)-MALV, Natural Language Processing
Word counting and n-grams

1 1

Hrafn Loftsson Hannes Hogni Vilhjalmsson

1School of Computer Science, Reykjavik University

September 2010

Loftsson, Vilhjalmsson N-grams

Outline

Word sequences

The construction of n-gram language models

Probabilistic models

B Smoothing

Loftsson, Vilhjalmsson N-grams

Outline

Word sequences

Loftsson, Vilhjalmsson

Collocations

Collocations (i. ordastaedur)

m A sequence of words or terms which co-occur more often than
would be expected by chance

m Phrases composed of words that co-occur for lexical rather
than semantic reasons

m “Heavy smoker” vs. “heavy writer"

m Often it is important to find collocations, for example in the
construction of dictionaries.

m Examples of collocations: “crystal clear”, “cosmetic surgery”,
“blonde hair”, “oft og tidum”, “veikur hlekkur".

Loftsson, Vilhjalmsson N-grams

Language models

Language model (i. mallikan)

m A probabilistic estimation for the frequency of words and word
sequences.

m Often used to predict the next word when the preceeding
sequence is known.

m Used in many NLP applications:

m Speech recognition, PoS tagging, parsing, semantic analysis,
machine translation, etc.

Loftsson, Vilhjalmsson N-grams

Word types and tokens

Word types (i. ordmyndir)

m Distinct words.

m The Icelandic Frequency Dictionary (/FD) corpus contains
59,358 word types.

Word tokens (i. tékar/lesmalsord)

m All words (tokens).
m The IFD corpus contains 590,297 tokens.

Loftsson, Vilhjalmsson N-grams

Word types and tokens

An example

m This is a school. Anna saw the school. John saw the school.

m 15 tokens, 9 word types.

Loftsson, Vilhjalmsson N-grams

n-grams (i. n-staedur)

m A sequence of N words (tokens).
m Unigrams (i. einstadur)

m Bigrams (i. tvistaedur)

m Trigrams (i. pristaedur)

m Fourgrams (i. fjérstaedur).

m etc.

Loftsson, Vilhjalmsson N-grams

This is a school.

Unigrams: “This", "is”, “a", “school”, “.
Bigrams: “This is", “is a", “a school”, “school ."
Trigrams: “This is a", “is a school”, “a school ."

Fourgrams: “This is a school”, “is a school ."

Loftsson, Vilhjalmsson N-grams

Outline

The construction of n-gram language models

Loftsson, Vilhjalmsson N-grams

More Unix/Linux tools

m Alphabetical order:
m sort inputfile > outputfile (ascending order)
m Sorting Icelandic text works under Linux using UTF-8 file
encoding for data

m Descending order:

m sort -r inputfile > outputfile
m Numerical sort

m sort -n inputfile > outputfile

Loftsson, Vilhjalmsson N-grams

More Unix/Linux tools

Eliminates or counts duplicate lines in a presorted file
uniq inputfile > outputfile
sort input.txt | uniq > output.txt

With frequency:
m uniq -c inputfile > outputfile

Counting frequencies
m sort input.txt | uniq -c | sort -nr > output.txt

Loftsson, Vilhjalmsson N-grams

The construction of n-gram language models

A unigram model

m Input: A corpus.

Tokenisation — one word (token) per line.
Counting.

Easy in Unix/Linux

m Let us assume that the file corpus.wrd contains one token per
line.

m sort corpus.wrd | uniq -c | sort -nr > corpus.freq

Loftsson, Vilhjalmsson N-grams

Counting unigrams in Perl (cf. 4.4.3 in textbook)

use utf8; # allow UTF-8 in the program text

$file = shift(@ARGV); # get the input file name

$outfile = shift(@ARGV); # get the output file name

open(INFILE, "<:utf8", "$file"); # open the file using utf8 encoding
open(OUTFILE, ">:utf8", "$outfile"); # write using utf8 encoding

while ($line = <INFILE>) { $text .= $line}
$text =~ tr /a-zadéioyuxspA-ZAPEIOYUEOPO-9.,()!?\-:;/\n/cs; # The not so perfec
$text =~ s/([,.7':;O\-1)/\n$1\n/g; # tokenisation step

$text =~ s/\n+/\n/g;

Q@words = split(/\n/, $text);

for ($i=0; $i <= $#words; $i++) {
if (lexists($frequency{$words[$il})) {$frequency{$words[$il} = 1;}
else {$frequency{$words[$i]}++;}

}

foreach $word (sort keys %frequency) {
print OUTFILE "$frequency{$word} $word\n";
}

Loftsson, Vilhjalmsson

More Unix/Linux tools

m head -3 < input.txt
m Returns the first three lines.

m tail -2 < input.txt
m Returns the last two lines.

m tail +2 < input.txt

m If this does not work, then tail --lines=+2 < input.txt
m Skips the first line.

Loftsson, Vilhjalmsson N-grams

The construction of n-gram language models

A bigram model

m Input: A corpus.
Tokenisation — one word (token) per line.
Construct bigrams: Print out word; and word; 1 in the same
line.
Counting.

Easy in Unix/Linux

m Let us assume that the file corpus.wrd contains one token per
line.

m tail --lines=+2 < corpus.wrd > corpus2.wrd
m paste corpus.wrd corpus2.wrd > corpus.bigrams

m sort corpus.bigrams | uniq -c | sort -nr > corpus.freq

Loftsson, Vilhjalmsson N-grams

A bigram model in Perl (cf. 4.4.4 in textbook)

use utf8; # allow UTF-8 in the program text
$file = shift(@ARGV); $outfile = shift(@ARGV); # get the output file name
open(INFILE, "<:utf8", "$file"); open(OUTFILE, ">:utf8", "$outfile");

while ($line = <INFILE>) { $text .= $line}

$text =~ tr /a-zAadéeidyu=spA-ZADEIOVUEGPO-9().,!7\-:;/\n/cs;
$text =~ s/([,.7!:;O\-1)/\n$1\n/g;

$text =" s/\nt+/\n/g;

@words = split(/\n/, $text);

for ($i=0; $i<$#words; $i++) {
$bigrams[$i] = $words[$i]l . " " . $words[$i+1]1; }

for ($i=0; $i <= $#tbigrams; $i++) {
if (lexists($frequency{$bigrams[$il})) {$frequency{$bigrams[$il} = 1;}
else {$frequency{$bigrams[$i]}++;}

}

foreach $bigram (sort keys Y%frequency) {
print OUTFILE "$frequency{$bigram} $bigram\n";

}

Loftsson, Vilhjalmsson N-grams

Outline

Probabilistic models

Loftsson, Vilhjalmsson

Probabilistic models of a word sequence

Maximum likelihood estimation (i. Sennileikalikur)

mlet S = wy,ws,...,w, be a word sequence.

m By using a (training) corpus M, we can estimate the
probability of this sequence.

m P(S) is the relative frequency of the string S in M.
m P(S) is called the maximum likelihood estimate (MLE) for S:

Pue(S) = C(Wl,wi\,l...,w,,) (1)

N is the total number of strings of length nin M.

Loftsson, Vilhjalmsson N-grams

Probabilistic models of a word sequence

Maximum likelihood estimation

m Most of the time, it is impossible to obtain this estimate,
because the size of a corpus is finite!

m We thus simplify (1) and decompose it:
P(S) = P(w1, wa, ..., w,)

= P(w1)P(wa|wi)P(w3|wi, wa) ... P(wp|w, ..., whp_1),

n
= HP(W,‘|W1, 0000 W,'_1)
i=1

Loftsson, Vilhjalmsson N-grams

Probabilistic models of a word sequence

The length of the n-grams needs to be limited

m P(/t was a bright cold day in April)

m P(S) = P(/t) * P(was|lt) * P(a | It, was) * P(bright | It, was,
a) ...* P(April | It, was, a, bright ..., in)

m In this example, we even need 8-gram statistics. No corpus is
big enough to produce them. We thus approximate these
probabilities (using the Markov assumption) with bigrams or
trigrams:

P(wilwi, ..., wj_1) = P(w;|w;_1) (2)

P(wilwa, ..., wi-1) = P(wiwj—2, wi1) (3)

Loftsson, Vilhjalmsson N-grams

Probabilistic models of a word sequence

The probability of a sentence using bigrams and trigrams

Bigrams : P(S) = P(Wl)H P(w;|w;_1)
i=2
C(wi—1, w;)
P(wijlwi—1) = P iWi—1) = —————
(wilwi—1) = Pmie(wilwi-1) Clwi 1)
Trigrams : P(S) = P(w1)P(wo|w1) [] P(wilwi—2, wi—1)
i=3

C(wi—2, wj—1, w;)

P(wilwi—2, wj_1) = Ppre(wilwi—2, wi—1) = Clwi 2, wi 1)
11— 1—

Loftsson, Vilhjalmsson N-grams

Training, developing and testing

Different kind of usage

m Training corpus (i. pjalfunarmalheild):
m A corpus used to derive the n-gram frequencies (the language
model).

m Test corpus (i. préfunarmalheild):
m The corpus on which we apply the model.
m Development corpus (i. préunarmalheild):
m A corpus used to fine-tune some parameters used by the model.

m All the three corpora need to be distinct.

Loftsson, Vilhjalmsson N-grams

n—fold cross-validation

m A corpus divided randomly into two parts, a training corpus
and a test corpus.

m The language model trained using the training corpus and the
model applied on the test corpus.

m Repeated n-times, each time with a new random division.

m Results are averaged.

m Called 10—fold cross-validation when n = 10.

m Results are not dependent on one specific division between

training and test sets.

Loftsson, Vilhjalmsson N-grams

Vocabulary

m Words, which are not part of the language model (i.e. have not
been encountered during training), will appear during testing.

m Why is that almost certain?

m These words are called unknown or out-of-vocabulary (OOV)
words.

m Moreover, the estimated frequency of unknown words is not
very reliable.
m Two approaches for handling unknown words:
m Closed vocabulary. Unknown words discarded.

m Open vocabulary. Unknown words handled in a specific
manner, e.g. using smoothing.

Loftsson, Vilhjalmsson N-grams

Sparse data (i. naum gogn)

m Language models are derived from corpora which are not large
enough to produce reliable frequencies for all possible bigrams
and trigrams.

m Given a vocabulary of 20,000 word types:

m Bigrams: 20,0002 = 400, 000, 000
m Trigrams: 20,0003 = 8,000, 000, 000, 000

m Training data is thus sparse. Many n-grams will get the
probability 0, which is not realistic (see an example on page
99).

m The MLE method gives no hint how to estimate probabilities
for unseen n-grams.

m = Smoothing (i. sléttun)

Loftsson, Vilhjalmsson N-grams

Outline

B Smoothing

Loftsson, Vilhjalmsson N-grams

Smoothing

Laplace’s Rule (1820)

m Simply adds one to all frequencies.
m = “the add one method".

m The frequency of unseen n-grams is thus 1.
C(wi,wiy1) +1
C(w;) + Card(V)

Card(V) is the number of word types.

PLaplace(Wi—H ’ Wi) =

Loftsson, Vilhjalmsson N-grams

Smoothing — table page 100

Wi, Wit1 C(wi,wit1) C(w;) + Card(V) Prap(witi|wi)
<s>a 133 7072 + 8634 0.008500
a good 14 2482 + 8634 0.001300
good deal 0 53 + 8634 0.000120
deal of 1 5 + 8634 0.000230
of the 742 3310 + 8634 0.062000
the literature 1 6248 + 8634 0.000130
literature of 3 7 + 8634 0.000460
of the 742 3310 + 8634 0.062000
the past 70 6248 + 8634 0.004800
past was 4 99 4 8634 0.000570
was indeed 0 2211 + 8634 0.000092
indeed already 0 17 + 8634 0.000120
already being 0 64 + 8634 0.000110
this way 3 264 + 8634 0.000450

Table: Frequencies of bigrams using Laplace's rule

Loftsson, Vilhjalmsson

N-grams

Smoothing

m Unseen n-grams receive an enormous mass of probabilities

m The unlikely bigram the of gets the frequency 1, one fourth of
the frequency of the (common) bigram this way.

m Discount factor is the ratio between the MLE frequencies and
the smoothed frequencies. This factor is often too high when
Laplace's rule is used.

m Example:

m According to the language model, the MLE probability for this
way is = 2—24 = 0.0114. After smoothing, the probability is
0.00045.

m Discount factor is: 23dd = 24.4.

m The MLE probability for this bigram has been discounted by
24.4 (to make place for the unseen bigrams).

Loftsson, Vilhjalmsson N-grams

Smoothing

Good-Turing estimation (1953)

m One of the most efficient smoothing methods.

m |t reestimates the counts of n-grams observerd in the corpus
by discounting them, and shifts probability mass it has shaved
to the unseen bigrams (as Laplace's rule).

m However, the discount factor is variable, and depends on the
number of times a n-gram has occurred in the corpus.

m Let N be the number of n-grams that occurred exactly ¢
times in the corpus.

m N is the number of unseen n-grams, Ny is the number of
n-grams seen once, etc.

Loftsson, Vilhjalmsson N-grams

Good-Turing

m Reestimates the frequency of n-grams occurring ¢ times, with

the formula: N
1
cx = (c+1)—t
C
m For unseen n-grams: cx = %
0
F . . _ 2xNs
m For n-grams occurring once: c* = <&
m For n-grams occurring twice: cx = %
m The conditional frequency is:
c*(wiy ..., wy)
Per(Walwy,...,wy_1) =
C(Wl, ey Wn—l)

Loftsson, Vilhjalmsson N-grams

Good-Turing — table page 102

Frequency of occurrence Ne c*

0 74.523.701 0.0005
1 37.365 0.31

2 5.820 1.09

3 2,111 2.02

4 1.067 3.37

5 719 391

6 468 4.94

Table: The reestimated frequencies of the bigrams using Good-Turing
smoothing.

Note that the reestimated frequency of bigrams not seen during
training is only 0.0005.

Loftsson, Vilhjalmsson N-grams

Linear interpolation

Linear interpolation = Deleted interpolation

Combines linearly the MLE of length 1 to n.

The estimation of each unseen n-gram depends on the exact
words comprising the n-gram.

For trigrams:

PDeIlnterpolation(Wn|Wn727 anl) =

ALPMLE (Wn| Wn—2, Wn—1)+

A2 Pme(Wa wn—1) + A3PyLe(wn)

where 0 < \; <1 and Z?:l A=1

The A; can be trained and optimised from a corpus.

Loftsson, Vilhjalmsson N-grams

	Word sequences
	The construction of n-gram language models
	Probabilistic models
	Smoothing

