IceParser: An Incremental Finite-State Parser for Icelandic

Daníel B. Sigurgeirsson

IceParser

- First parser for Icelandic
 - http://nlp.cs.ru.is/IceNLPWeb/icenlp.html
- Input: POS-tagged text
- Output: parsed text with phrases and syntatic structures marked
- Two-phase processing:
 - Phrase-structure module
 - Syntatic structure module
- Each phase is comprised of a series of finite-state transducers
 - Transducer is an automata that accepts, translates or generates a pair of strings

Shallow parsing

- Shallow parsing vs. Deep parsing:
 - Deep parsing builds a full parse tree for a given sentence, while shallow parsing only parses individual "chunks" of the sentence
- Benefits from using shallow parsing:
 - o less complexity, more speed
 - more robust, parser is less sensitive to grammatical errors in the text, and/or low quality in the input (missing words, mistakes, noise)
 - works well when the language has a free word order (like Icelandic)
 - shallow parsing is sufficient for many applications
 - information extraction, text summarisation, grammar checking etc.

Reduction vs. Construction

- Reductionist method:
 - reduce all possible readings of a sentence (represented by finite-state automata) to one correct reading by a set of elimination rules.
- Constructive method:
 - based on a lexical description of a collection of syntactic patterns
- IceParser uses the constructive method
 - a sequence of transducers are chained together forming a "pipeline"

Phase 1: Phrases

- The following phrases should be marked according to the EAGLES (Expert Advisory Group for Language Engineering Standards) standard:
 - AdvP (Adverb)
 - AP (Adjective)
 - NP (Noun)
 - PP (Preposition)
 - VP (Verb) which are subclassified (VPx)
- Additionally, the following phrase categories are marked:
 - CP (Coordinating conjunction)
 - SCP (Subordinating conjunction)
 - InjP (Interjection)
 - APs (sequence of adjective phrases)
 - NPs (sequence of noun phrases)
 - MWE (Multi-word expressions)

Bottom-up method

- Phrases are marked using the bottom-up method:
 - AdvP are marked before AP,
 - AP are marked before NP
 - o etc.
- Example:
 - mjög góður (very good)
 - [AdvP mjög AdvP] góður
 - [AP [AdvP mjög AdvP] góður AP]

Phase 2: Syntatic structures

- Curly braces denote a syntatic function
- The following tags are used:
 - *QUAL (genitive qualifier)
 - *SUBJ (subject)
 - OBJ (object)
 - *OBJAP (object of an AP)
 - *OBJNOM (nominative object)
 - *IOBJ (indirect object)
 - *COMP (complement)
 - *TIMEX (temporal expression)
- Relative position indicators: < and >:
 - *SUBJ> verb is positioned to the right
 - *SUBJ< verb is positioned to the left

Examples

- {*SUBJ> [NP vagnstjórinn NP] *SUBJ>} [VP sá VP] {*OBJ< [NP mig NP] *OBJ<} (driver-the saw me)
- {*SUBJ> [NP systir NP] {*QUAL [NP hennar NP] *QUAL}
 *SUBJ>} [VPb var VPb] (sister her was)
- [VPb er VPb] {*SUBJ< [NP ég NP] *SUBJ<} {*COMP< [VPp fædd VPp] [CP og CP] [VPp uppalin VPp] *COMP<} (am I born and raised)

Efficiency and Error rate

- Written in Java
- Can process 11.300 word-tag pairs per second
 - the output of each module is not written to file, but streamed into the next one
- Accuracy:
 - 96,7% for constituents
 - 84,3% for syntatic functions

Results for various phrase types

Phrase type	F-measure using correct POS tag	F-measure using IceTagger	Freq. in test data
AdvP	91,8%	85,1%	8,2%
AP	95,1%	86,3%	8,1%
APs	87,0%	68,6%	0,5%
NP	96,8%	93,0%	37,6%
NPs	80,4%	74,3%	1,5%
PP	96,7%	91,3%	13,0%
VPx	99,2%	93,8%	19,3%
СР	100%	99,6%	5,7%
SCP	99,6%	97,6%	3,4%
InjP	100%	96,3%	0,2%
MWE	96,9%	92,6%	2,5%
All	96,7%	91,9%	100,0%

Types of errors

- Example of an Adverb phrase error:
 - "um það vissi stúlkan ekki þá" [PP um [NP það NP] PP]
 [VP vissi VP] [NP stelpan NP] [AdvP ekki þá AdvP]
 (about that knew girl not then).
 - "ekki þá" does not belong together
- Errors in adjective phrases:
 - og tóku fram eigin dósir" [CP og CP] [VP tóku VP] [NP [AP [AdvP fram AdvP] eigin AP] dósir NP] (and took out own cans)
 - "fram eigin dósir" "fram" belongs with "tóku"

cont.

- Noun phrase errors:
 - "sterkur var hann og íþróttamaður góður" [AP sterkur AP] [VPb var VPb] [NPs [NP hann NP] [CP og CP] [NP íþróttamaður NP] NPs] [AP ágætur AP] (strong was he and athlete fine).
 - "hann og íþróttamaður" don't belong together, but are incorrectly parsed as such

Room for improvement?

- Possible options:
 - o after shallow parsing, build a deep parse tree
 - use more information in the POS tags currently only word class and case features are used
 - however, this would mean that the tool could not be used in grammar checking applications