Natural Language Processing:
Programming Project II
PoS tagging

Reykjavik University — School of Computer Science
November 2009

1 Pre-processing (20%)

In this project you experiment with part-of-speech (PoS) tagging using the
German Tiger corpus. Gotohttp://www.ims.uni-stuttgart.de/projekte/
TIGER/TIGERCorpus/ and download the corpus by selecting the “License”
link.

The tiger release_aug07.export file is the one you need to pre-process.
This file has various data (see the link “Negra Export Format” on the Tiger
web page), but in this project we are only interested in <word, PoS tag>
pairs (starting from line no. 2356).

1.1 Data extraction

Here you need to generate one file from tiger release aug07.export. The
file should contain column 1, as well as columns 3 (an STTS (Stuttgart-
Tiibingen Tagset) tag) and 4 (morphological tags) merged together. Put a
dot (*.”) in between the data from columns 3 and 4. Thus, the resulting file
contains a token and its morphosyntactic tag. Name this file data.txt. For
example, the third and the forth lines in data.tzt should look like this:

Perot NE.Nom.Sg.Masc
ware VAFIN.3.Sg.Past.Subj

Make sure that there is an empty line between sentences in data.txt.
If you do the above described extraction correctly, the file contains 939,052
lines.



1.2 Split into train and test corpora

Assuming you have the file data.tzt, you now need to generate a <train,
test> pair for this file. The last 49,982 lines (starting with “Die Folge ist
...”") in the file constitutes the test data, everything above it consists of the
training data.

Therefore, the output of this phase consists of two corpora: train.txt and
test.txt.

1.3 Use a shell script!

You should write a shell script which uses some Linux text processing utilities
like head, tail, grep, sed, and awk to extract all the relevant data described
above. An alternative is to use Perl to perform this task.

2 Base tagger (30%)

In this part you develop a base tagger, i.e. a tagger which always selects
the most frequent tag for each word (token). Use the following procedure to
develop your tagger:

1. Training

e For the training corpus train.tzt, use the Linux tools sed, uniq and
sort to construct the file train.freq showing the frequency of each
<word, tag> pair appearing in train.tzt.

Here are the first ten entries from train.freq:

41190 , $,.--

38880 . $..--

15341 und KON. --

12988 in APPR. --

8331 *? $C.--

8329 ¢ $C.--

7942 der ART.Dat.Sg.Fem
7771 von APPR. --

6807 die ART.Acc.Sg.Fem
6426 der ART.Gen.Sg.Fem

e Write a Perl program, buildDictionary.pl which reads a file in the
format described above (i.e. the format of train.freq). The output
is a dictionary, train.dict. Each line has the following form:



w wfreq t1 tifreq t2 t2freq ...

Each line shows how often (wfreq) a specific word w appears
in the input, followed by <tag, frequency> pairs for the given
word, sorted by descending frequency. For example <t1, t1freq>
denotes that w was tagged t1freq times with tag t1 and that ¢1
was the most frequent tag for w.

Note that this dictionary contains more information than is needed
for your base tagger, since it only needs information about the
most freqent tag, but all this would be needed if you were devel-
oping an HMM tagger.

2. Tagging new text (testing). Write a Perl program, base Tagger.pl,
accepting a dictionary (having the format described above) as input
and tokenised text for testing, i.e. one token per line with an empty
line between sentences. I suggest that you supply the file test.tzt as
the second parameter even though it contains both the token and its
correct tag — the program will just simply ignore the tag. The program
outputs one line for each word and its most frequent tag.

For unknown words:

e Use the the tag NN.Nom.Sg.Masc as a default (this tag is the
most frequent noun tag in the corpus).

e Moreover, output <UNKNOWN> at the end of the line to mark
the word as unknown.

An example of usage: perl baseTagger.pl train.dict test.txt test.out

An example of lines (no. 12-34) from test.out:

(X1 $(.__

Man PIS.Nom.Sg.*

hat VAFIN.3.Sg.Pres.Ind
einen ART.Acc.Sg.Masc
Teil NN.Nom.Sg.Masc

der ART.Dat.Sg.Fem
Landsleute NN.Gen.Pl.x*
aus APPR.--

dem ART.Dat.Sg.Masc
demokratischen ADJA.Pos.Dat.Sg.Fem
Konsens NN.Acc.Sg.Masc



verloren VVPP.Psp

, 8, .-

weil KOUS.--

sie PPER.3.Nom.Sg.Fem

sich PRF.3.Acc.Sg

solcher PIAT.Gen.Pl.Neut
Anbiederung NN.Nom.Sg.Masc <UNKNOWN>
nicht PTKNEG.--

anschlieflen VVINF.Inf
wollten VMFIN.3.Pl.Past.Ind
.$--

3 Accuracy (30%)

Write a Perl program, accuracy.pl, accepting an input file in the following
form:

word correct_tag word tag_from_tagger <UNKNOWN>

(<UNKNOWN > only appears if the word is unknown).

The input file is thus a combination of a gold standard file and the output
from a tagger. The output is written to standard out and shows the accuracy
of the tagger for known words, unknown words and all words.

An example of usage: perl accuracy.pl <combined file>

Example output:

Number of tokens: 47372

Number of errors: 16384

Overall tagging accuracy: 65.41%

Tagging accuracy for known words: 71.19%
Number of unknown words: 4108

Unknown word ratio: 8.67%

Number of errors for unknown words: 3918
Tagging accuracy for unknown words: 4.63%

For this part, I recommend that you write a script which starts by com-
bining test.trt and test.out into one file and then executes accuracy.pl.



4 Training and testing an HMM tagger (20%)

In this part you need to train TriTagger, the trigram tagger which is part of
the Ice NLP toolkit, and then use it to tag the test corpus.

Important: Ice NLP assumes all files are UTF-8 encoded. Therefore,
you have to convert your training and test corpora to UTF-8 (if you have
not done that already) before using TriTagger.

1. Download Ice NLP from http://www.ru.is/faculty/hrafn/Software/
IceNLP-1.3.zip, and extract to a directory of your choice.

2. Read the section on TriTagger in the user manual IceNLP.pdf (avail-
able in the /doc directory) to become familiar with how to train using
a training corpus, and run the tagger using a test corpus.

3. Make a version of your test corpus which only includes the words,
but not the PoS tags.

4. Build a training model using the train.tzt corpus. Show the com-
mand you use for training.

5. Now use TriTagger to tag the test corpus' and make it write the output
to the file test.tri.out. Show the command you use for tagging
(testing).

6. Finally, use your accuracy.pl program to compute the accuracy of
TriTagger for the test corpus. Show the output of accuracy.pl.

5 What to hand in

Return a report describing each step you took to solve this project. In par-
ticular, describe all commands used and programs and scripts implemented.
Moreover, handin all scripts and programs, along with instructions on how
to use them. Also make sure that you discuss the results.

Make sure that you start TriTagger with the -cs flag. Information about the flags is
in the user manual and you can also see command line flags by typing . /tritagger.sh -help.



