
Natural Language Processing:
Programming Project II

POS tagging

Reykjavik University – School of Computer Science

October 2009

1 Base tagger (60%)

In this part you develop a base tagger, i.e. a tagger which always selects
the most frequent tag for each word (token). Start by downloading the file
http://www.ru.is/faculty/hrafn/Data/eng.zip. The .zip file contains
files for training (eng.train) and testing (eng.tst), as well as a gold standard
for the test file (eng.tst.gold).

Use the following procedure to develop your tagger:

1. Training

• Use the Linux tools sed, uniq and sort to construct the file eng.freq
showing the frequency of each <word, tag> pair appearing in
eng.train. Here are the first ten entries from eng.freq :

7374 . .
7290 , ,
7243 the DT
3751 of IN
3382 to TO
3378 in IN
2993 a DT
2861))
2861 ((
2838 and CC

1

• Write a Perl program, buildDictionary.pl which reads a file in the
format described above (i.e. the format of eng.freq). The output
is a dictionary, eng.dict. Each line has the following form:

w wfreq t1 t1freq t2 t2freq ...

Each line shows how often (wfreq) a specific word w appears
in the input, followed by <tag, frequency> pairs for the given
word, sorted by descending frequency. For example <t1, t1freq>
denotes that w was tagged t1freq times with tag t1 and that t1
was the most frequent tag for w.
Note that this dictionary contains more information than is needed
for your base tagger, since it only needs information about the
most freqent tag. If you find this to difficult to implement, then
you are allowed to generate a dictionary in the following format
instead:

word tag

i.e. a file which only includes information on a word and its most
frequent tag1.

2. Tagging new text (testing). Write a Perl program, baseTagger.pl,
accepting a dictionary (having either of the two formats described
above) as input and tokenised text for testing, i.e. one token per line
with an empty line between sentences. The program outputs one line
for each word and its most frequent tag.

For unknown words:

• If the word starts with a lower case letter then use the tag NN
(denoting a common noun).

• If the word starts with an upper case letter then use the tag NNP
(denoting a proper noun).

• Moreover, output <UNK> at the end of the line to mark the word
as unknown.

An example of usage: perl baseTagger.pl eng.dict eng.tst eng.tst.out

An example of lines from eng.tst.out :
1Note, however, that a dictionary with complete frequency information is, for example,

needed to build a tagger based on a HMM.

2

Realizing NNP <UNK>
he PRP
was VBD
almost RB
running VBG
Jovah NNP <UNK>
slowed NN <UNK>
to TO
a DT
walk NN
, ,
then RB
stopped VBN
and CC
looked VBD
out RP
over IN
the DT
sea NN
. .

2 Accuracy (30%)

Write a Perl program, accuracy.pl, accepting an input file in the following
form:

word correct_tag word tag_from_tagger <UNK>

(<UNK> only appears if the word is unknown).

The input file is thus a combination of a gold standard file and the output
from a tagger. The output is written to standard out and shows the accuracy
of the tagger for known words, unknown words and all words.

An example of usage: perl accuracy.pl <combined_file>
An example of output:

Number of tokens: 2144
Number of errors: 293
Overall tagging accuracy: 86.33%
Tagging accuracy for known words: 94.41%
Number of unknown words: 302

3

Unknown word ratio: 14.09%
Number of errors for unknown words: 190
Tagging accuracy for unknown words: 37.09%

For this part, I recommend that you write a script which starts by com-
bining eng.tst.gold and eng.tst.out into one file and then executes accuracy.pl.

3 Linguistic rules (10%)

Can you add simple linguistic rules to baseTagger.pl for the purpose of in-
creasing the accuracy? You could, for example, add rules to improve the
accuracy of unknown words and/or known words.

Incrementally develop rules and use accuracy.pl to compute your accu-
racy at each step.

4 What to hand in

Return the sequence of commands you used for training your base tagger (i.e.
the commands you used to generate eng.freq), all program code (also scripts),
along with the output from accuracy.pl using base tagging (and improved
tagging if you implemented that part). Moreover, return instructions on how
to train and test your tagger and how to compute the accuracy.

4

