T-(538|725)-MALV, Natural Language Processing
Regular expressions

Hrafn Loftsson1 Hannes Högni Vilhjálmsson1

1School of Computer Science, Reykjavik University

September 2009
Outline

1. Strings and languages

2. Regular expressions
Outline

1. Strings and languages

2. Regular expressions
Strings

An alphabet

- A finite set of symbols or characters.
- Example: \{0,1\} is the binary alphabet.

A string

- A string \(s\) from the alphabet \(\Sigma\) is a finite sequence of characters drawn from \(\Sigma\).
- \(|s|\) denotes the length of \(s\).
- \(\epsilon\) denotes the empty string; its length is 0.
Strings

An alphabet

- A finite set of symbols or characters.
- Example: \{0,1\} is the binary alphabet.

A string

- A string s from the alphabet Σ is a finite sequence of characters drawn from Σ.
- $|s|$ denotes the length of s.
- ϵ denotes the empty string; its length is 0.
A language

Definition

- A set of strings.
- Example: \emptyset, {ϵ}, {ab,ba}, {011,101,111}.

Concatenation and multiplication

- If x and y are strings then their concatenation xy is a string obtained by concatenating y to x.
- $s\epsilon = \epsilon s = s$
- $s^0 = \epsilon$, $s^1 = s$, $s^2 = ss$,
- $s^i = ss^{i-1}$, $i > 0$
A language

Definition

- A set of strings.
- Example: \emptyset, $\{\epsilon\}$, $\{ab, ba\}$, $\{011, 101, 111\}$.

Concatenation and multiplication

- If x and y are strings then their concatenation xy is a string obtained by concatenating y to x.
- $s\epsilon = \epsilon s = s$
- $s^0 = \epsilon$, $s^1 = s$, $s^2 = ss$,
- $s^i = ss^{i-1}$, $i > 0$
Operations on languages

- $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
- $LM = \{st \mid s \in L \text{ and } t \in M\}$
- Kleene closure: 0 or more concatenations of L
 - $L^* = \bigcup_{i=0}^{\infty} L^i$
- Positive closure: 1 or more concatenations of L
 - $L^+ = \bigcup_{i=1}^{\infty} L^i$
$L = \{ A, B, \ldots, Z, a, b, \ldots, z \}$ and $D = \{ 0, 1, \ldots, 9 \}$.

What languages (set of strings) are:

- $L \cup D$
- LD
- L^4
- L^*
- $L(L \cup D)^*$
- D^+
1 Strings and languages

2 Regular expressions
Regular expressions (regex)

- A language used to describe a set of strings.
- Very powerful devices to describe patterns to search for in texts.
- Each regular expression r denotes a language $L(r)$.
- Are composed of ordinary text characters (e.g. abc) and of metacharacters, e.g. "*" and "+".
- Complex regex can be constructed from simple regex using special rules.
Regular expressions

For an alphabet Σ:

1. ϵ is a regex denoting $\{\epsilon\}$.
2. If $a \in \Sigma$, then a is a regex denoting $\{a\}$.
3. Let us assume r and s are regex denoting the languages $L(r)$ and $L(s)$. Then:
 - $(r)\|(s)$ is a regex denoting $L(r) \cup L(s)$.
 - $(r)(s)$ is regex denoting $L(r)L(s)$.
 - $(r)^*$ is a regex denoting $(L(r))^*$.
 - (r) is a regex denoting $L(r)$.
Regular expressions

Operator precedence:

- * has the highest precedence.
- Concatenation next highest.
- | has the lowest precedence.
- Accordingly: \((a)\|(b)^*(c)) = a|b^*c\)
Examples of regular expressions

Which languages denote the regular expressions:

- $a | b$
- $(a | b)(a | b)$
- a^*
- $a | b^* c$
More about regular expressions

Other characters having a special meaning

In many tools which support regex the following characters have a special meaning:

- ? + . {n}
- See descriptions in table 2.9 page 37
More about regular expressions

Character classes

- A list of characters between square brackets matches any character contained in the list.
- The regex `[abc]` means one occurrence of either `a`, or `b` or `c` (`a|b|c`).

Complement and range

- `[^a]` means any character that is not an `a`.
- `[a-zA-Z]` means `a`, `b`, ..., `z`, `A`, `B`, ..., `Z`.
More about regular expressions

Character classes

- A list of characters between square brackets matches any character contained in the list.
- The regex \([a\,b\,c]\) means one occurrence of either \(a\), or \(b\) or \(c\) (\(a\mid b\mid c\)).

Complement and range

- \([\sim a]\) means any character that is not an \(a\).
- \([a-zA-Z]\) means \(a\), \(b\), \(\ldots\), \(z\), \(A\), \(B\), \(\ldots\), \(Z\).
Longest match

Ambiguity

- String matching can be ambiguous.
- For example, the string $s = “aabbc”$ and the regex $a^+ b^*$
- This regex matches the following substrings of s: a, aa, ab, aab, abb, $aabb$

Disambiguation – two rules

Most tools which support regex:

- They match as early as they can in a string.
- They match as many characters as they can.
- Thus, $a^+ b^*$ matches $aabb$, the longest match.
Longest match

Ambiguity

- String matching can be ambiguous.
- For example, the string $s = \text{“aabbc”}$ and the regex $a^+ b^*$
- This regex matches the following substrings of s: $a, aa, ab, aab, abb, aabb$

Disambiguation – two rules

Most tools which support regex:

- They match as early as they can in a string.
- They match as many characters as they can.
- Thus, $a^+ b^*$ matches $aabb$, the longest match.
A regex can be converted automatically to an NFA (non-deterministic FSA).

- The method is, for example, discussed in the *Compiler* course.

An FSA can accept the set of strings which a particular regex stands for.
Various tools and programming languages

- grep/egrep (Unix/Linux tool)
 - `grep 'ab*c' myFile`
 - Prints all the lines from the file `myFile` containing the strings `ac`, `abc`, `abbc`, `abbbc`, etc.

- Support for regular expressions is in various contemporary languages, e.g. Perl, Python, Java, C#.