Outline

1. POS tagging
2. Accuracy in POS tagging
3. Type of taggers
4. Linguistic rule-based taggers
5. A tagger which learns rules
Outline

1 POS tagging
2 Accuracy in POS tagging
3 Type of taggers
4 Linguistic rule-based taggers
5 A tagger which learns rules
What is POS tagging (í. mörkun)?

A definition

- To label (í. marka) each word in a text with the appropriate word class (í. orðflokkur) and morphological features (í. beygingarleg einkenni).
- The string used as a label is called a tag (í. mark)

Why is this difficult?

- Some words are ambiguous (í. margræð).
- A tagger is some times called a disambiguator, since it performs ambiguity resolution (í. einræðing).
- When looking up a word in a dictionary or performing morphological analysis ⇒ more than one tag (analysis) for the word is possible.
What is POS tagging (í. mörkun)?

A definition

- To label (í. marka) each word in a text with the appropriate word class (í. orðflokkur) and morphological features (í. beygingarleg einkenni).
- The string used as a label is called a tag (í. mark)

Why is this difficult?

- Some words are ambiguous (í. margræð).
 - A tagger is some times called a disambiguator, since it performs ambiguity resolution (í. einræðing).
- When looking up a word in a dictionary or performing morphological analysis ⇒ more than one tag (analysis) for the word is possible.
POS tagging

Significance

- The tag for a word gives important information about the word and its neighbors.
 - “You shall know a word by the company it keeps” (Firth, 1957)
 - For example, the gender, number and case of an adjective signify comparable features for the following noun.
- Helps with speech synthesis.
 - OBJect (noun) vs. obJECT (verb)
- The base for grammar checking, machine translation, parsing.
- Used in the construction of annotated corpora.
A tagset (í. markamengi) is the set of all possible tags (labels).

Different languages have different tagsets.

The same language can have more than one tagset.

Icelandic: *The Icelandic Frequency Dictionary* (Íslensk orðtíðnibók) – 700 tags.

English: *Penn Tree Bank*: 45 tags, *Brown Corpus*: 87 tags.

Swedish: *Parole*: 139 tags.

Czech: About 1000 tags.
Full disambiguation (í. full einræðing)

- A single tag is assigned to each word (token).
- The most common method, but ...
- ...sometimes a tagger cannot perform full disambiguation.
- In that case, the tagger returns a set of possible tags for a given word.
Example: English POS tagging

Penn Treebank tagset: http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

- The *back* door = JJ
- On my *back* = NN
- Win the voters *back* = RB
- Promised to *back* the bill = VB
“Gamli maðurinn borðar kalda súpu með mjög góðri lyst” (Old man-the eats cold soup with very good appetite)

gamli: lkenvf
maðurinn: nkeng
borðar: sfg3en_sfg2en
kalda: lveosf_lkfosf_lkeovf_lkeþvf_lkeevf_lvenvf_lhenvf_lheovf_lheþvf_lheevf
súpu: nveo_nveþ_nvee
með: aþ_aa
mjög: aa
góðri: lvepsf
lyst: nven_nveo_nveþ

Loftsson, Vilhjálmsson
POS tagging
Icelandic POS tagging – disambiguation

“Gamli maðurinn borðar kalda súpu með mjög góðri lyst”

<table>
<thead>
<tr>
<th>Icelandic</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamli</td>
<td>lkenvf</td>
</tr>
<tr>
<td>maðurinn</td>
<td>nkeng</td>
</tr>
<tr>
<td>borðar</td>
<td>sfg3en</td>
</tr>
<tr>
<td>kalda</td>
<td>lveosf</td>
</tr>
<tr>
<td>súpu</td>
<td>nveo</td>
</tr>
<tr>
<td>með</td>
<td>aþ</td>
</tr>
<tr>
<td>mjög</td>
<td>aa</td>
</tr>
<tr>
<td>góðri</td>
<td>lveðsf</td>
</tr>
<tr>
<td>lyst</td>
<td>nveþ</td>
</tr>
</tbody>
</table>
In a research for English and French: 50-60% of tokens have only one possible tag, 15-25% have only two possible tags.
Assigning the most frequent tag for a word yields more than 75% accuracy.
This is called *base tagging* (í. grunnmörkun)
Charniak (1993) has obtained more than 90% accuracy by applying base tagging for English.
Note that the underlying tagset plays an important role here.
In the Icelandic Frequency Dictionary (IFD):

- Unambiguous word forms: 84.16%
- Ambiguous word forms: 15.84%
- Ambiguous word forms with 2 tags: 11.07%
- Ambiguous word forms with 3 tags: 2.96%
- Ambiguous word forms with 4 tags: 0.97%

Which words are ambiguous?

- Usually the most common words, the function words.
In the Icelandic Frequency Dictionary (IFD):

- Unambiguous word forms: 84.16%
- Ambiguous word forms: 15.84%
- Ambiguous word forms with 2 tags: 11.07%
- Ambiguous word forms with 3 tags: 2.96%
- Ambiguous word forms with 4 tags: 0.97%

Which words are ambiguous?

- Usually the most common words, the function words.
Baseline tagging

Common words and their tags in the IFD

33181 . .
22176 og c
22083 , ,
21011 að cn_c_ab_aa
15319 í aþ_ao_aa
12450 á aþ_ao_sfg1en_sfg3en_aa_nven_nveo_nveþ_au
8040 hann fpken_fpkeo
7905 var sfg3ep_sfg1ep_lkensf
7676 sem ct_c_aa_sfg1en
6357 er sfg3en_sfg1en_ct_c
Outline

1 POS tagging

2 Accuracy in POS tagging

3 Type of taggers

4 Linguistic rule-based taggers

5 A tagger which learns rules
Measuring the accuracy

Full disambiguation

accuracy (í. hittni) = \[
\frac{\# \text{ correctly tagged tokens}}{\text{total number of tokens}}
\]

(1)

Not full disambiguation

\[\text{precision} = \frac{\# \text{ correct tags generated by the tagger}}{\text{total number of tags generated by the tagger}}\]

(2)

\[\text{recall} = \frac{\# \text{ correct tags generated by the tagger}}{\text{total number of correct tags}}\]

(3)

\[\text{ambiguity rate} = \frac{\# \text{ tags generated by tagger}}{\text{total number of tokens}}\]

(4)
Measuring the accuracy

Full disambiguation

\[
\text{accuracy (í. hittni)} = \frac{\text{correctly tagged tokens}}{\text{total number of tokens}}
\]

Not full disambiguation

\[
\text{precision} = \frac{\text{correct tags generated by the tagger}}{\text{total number of tags generated by the tagger}}
\]

\[
\text{recall} = \frac{\text{correct tags generated by the tagger}}{\text{total number of correct tags}}
\]

\[
\text{ambiguity rate} = \frac{\text{tags generated by tagger}}{\text{total number of tokens}}
\]
Measuring the accuracy

Example: 100 tokens

- A tagger performs full disambiguation and correctly tags 95 tokens. \(\Rightarrow \text{accuracy} = \frac{95}{100} = 95\% \)
- A tagger doesn’t perform full disambiguation and returns 105 tags, of which 95 are correct.
 - \(\Rightarrow \text{precision} = \frac{95}{105} = 90.5\% \)
 - \(\Rightarrow \text{recall} = \frac{95}{100} = 95.0\% \)
 - \(\Rightarrow \text{ambiguity rate} = \frac{105}{100} = 1.05 \)

Note that when full disambiguation is applied then \textit{accuracy}=$\textit{precision}$=\textit{recall} and \textit{ambiguity rate}=1.0.

- precision=nákvæmni, recall=griphlutfall, ambiguity rate=margræðn hlutfall

Loftsson, Vilhjálmsson POS tagging
Accuracy in POS tagging

What can affect the accuracy?

- The type of tagger – the quality of the language model.
- The size of the tagset.
- The ratio of unknown words.
 - The possible tags for unknown words are not known!
 - An *unknown word guesser* is needed.
- The size of the training corpus.
- The type of the test corpus.
Accuracy in POS tagging

- English:
 - 96.7% (Brants, 2000)
 - Ratio of unknown words: 2.9%
 - Training corpus: 1,000,000 words.
 - Tagset: 45 tags (Penn Tree Bank).

- Swedish:
 - 93.6% (Megyesi, 2002)
 - Ratio of unknown words: 15.0%
 - Training corpus: 100,000 words.
 - Tagset: 139 tags.

- Icelandic:
 - 91.5% (Loftsson, 2006)
 - Ratio of unknown words: 6.8%
 - Development corpus: 59,000 words.
 - Tagset: 700 tags.
Outline

1. POS tagging
2. Accuracy in POS tagging
3. Type of taggers
4. Linguistic rule-based taggers
5. A tagger which learns rules
Type of taggers

Rules vs. statistics

- Rules use the context of a word to eliminate or change a particular tag.
- Rules can be hand-written or learned in a data-driven manner from a tagged corpus.
- Statistical methods are used to assign words in a sentence the most likely tag sequence.
- Statistical methods use frequency information (e.g. n-grams) which are derived from a tagged corpus.
Type of taggers

Linguistic rule-based taggers (í. Málfræðilegir reglumarkarar)

- Are based on hand-written linguistic rules.
- Only used to tag a particular language using a specific tagset.

Data-driven taggers (í. Gagnamarkarar)

- Language and tagset independent.
- Use POS tagged corpora to automatically collect information which is later used for disambiguation of new texts.
- This information can, for example, be in the form of statistics or rules.
Type of taggers

Linguistic rule-based taggers (í. Málfræðilegir reglumarkarar)

- Are based on hand-written linguistic rules.
- Only used to tag a particular language using a specific tagset.

Data-driven taggers (í. Gagnamarkarar)

- Language and tagset independent.
- Use POS tagged corpora to automatically collect information which is later used for disambiguation of new texts.
- This information can, for example, be in the form of statistics or rules.
Outline

1. POS tagging
2. Accuracy in POS tagging
3. Type of taggers
 4. Linguistic rule-based taggers
 5. A tagger which learns rules
Linguistic rule-based taggers

Typical functionality

1. Each word is assigned its *tag profile*, the set of possible tags for that word
 - Using a dictionary, or a morphological analyser, and/or an unknown word guesser.

2. Disambiguation using rules
 - Inappropriate tags eliminated with regard to context (reductionist approach)
Linguistic rule-based taggers

Typical functionality

- A preposition does (usually) not appear before a verb
 - The word *fórum* is a noun in the context *í fórum mínun*.

- A possessive pronoun agrees with the following noun in gender, number and case.
 - In the context *hesta þinna* (horses yours), the word *þinna* is unambiguously genitive case and therefore the word *hesta* is also genitive, but not accusative.
Linguistic rule-based taggers

Constraint Grammar Framework (Fred Karlsson 1990)

- A morphological analyser (based on two-level morphology) returns all possible analysis for each word.
- Rules (constraints) are written to eliminate tags with regard to context.
- Often thousands of rules, e.g. EngCG-2 with 3,600 rules.
- Time-consuming but recall is high. Does not perform full disambiguation for all words.
- Samuelsson and Voutilainen (1997):
 - Recall: 99.6%
 - Ambiguity rate: 1.02%.
Linguistic rule-based taggers

IceTagger - Hrafn Loftsson

- Unknown word guesser: *IceMorphy*
- Local rules
 - About 175 rules.
 - Eliminate a specific tag in a particular context.
 - The local context is 5 words.
- Global rules
 - Heuristics (í. leitaraðferðir)
 - Guess the syntactic functions of words (subject, verb, object).
 - Mark preposition phrases.
 - Use the above to force feature agreement.
The most frequent tag for a word is selected if a word is still ambiguous after the application of local and global rules.

IceTagger is thus a combination of a linguistic rule-based tagger and a base tagger.

Test

http://nlp.ru.is and select *IceNLP*.
IceTagger

Full disambiguation

- The most frequent tag for a word is selected if a word is still ambiguous after the application of local and global rules.
- IceTagger is thus a combination of a linguistic rule-based tagger and a base tagger.

Test

- http://nlp.ru.is and select IceNLP.
Outline

1. POS tagging
2. Accuracy in POS tagging
3. Type of taggers
4. Linguistic rule-based taggers
5. A tagger which learns rules
A tagger which learns rules

Brill’s tagger (Eric Brill 1992)

- A data-driven tagger.
- Learns rules in training which change one tag to another.
 - “Transformation-based learning”
- A dictionary is derived from the training corpus.
 - Keeps track of the most frequent tag for a word.
Brill’s tagger

Functionality

- Initially, assigns the most frequent tag to each word (base tagging).
- Applies a list of rules (transformations) to change the initial tagging.
- The rules are applied in a specific order and each transformation is applied on the text from left to right.

An example for English:

- “The can rusted”
- With the most likely tag: The/art can/modal rusted/verb.
- Rule: *Change the tag from modal to noun if the previous word is an article.*
- Result: The/art can/noun rusted/verb.
Brill’s tagger

How are the rules derived?

- Rules are based on templates.
- The templates restrict the type of rules that can be generated.
- Example template:
 - alter(A, B, prevtag(C)) Change A to B if preceding tag is C.
 - alter(A, B, nextbigram(C,D)) Change A to B if next bigram tag is C D.
- Brill used 11 templates for English, which resulted in about 500 rules, sufficient for achieving about 97% accuracy.
Brill’s tagger – The training algorithm

<table>
<thead>
<tr>
<th>St.</th>
<th>Operation</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Base tagging</td>
<td>Corpus</td>
<td>Corpus(1)</td>
</tr>
<tr>
<td>2.</td>
<td>Compare POS of each word in Gold standard and Corpus(i)</td>
<td>Gold standard Corpus(i)</td>
<td>List of errors</td>
</tr>
<tr>
<td>3.</td>
<td>For each error, instantiate the rule templates to correct the error</td>
<td>List of errors</td>
<td>List of tentative rules</td>
</tr>
<tr>
<td>4.</td>
<td>For each rule, compute on Corpus(i) # of good transf. - # of bad transf.</td>
<td>Corpus(i) Tentative rules</td>
<td>Scored tentative rules</td>
</tr>
<tr>
<td>5.</td>
<td>Select the rule that has the greatest error reduction and append it to the ordered list of transformations</td>
<td>Tentative rules</td>
<td>Rule(i)</td>
</tr>
<tr>
<td>6.</td>
<td>Apply Rule(i) to Corpus(i)</td>
<td>Corpus(i) Rule(i)</td>
<td>Corpus(i+1)</td>
</tr>
<tr>
<td>7.</td>
<td>If number of errors $< \delta$ exit else go to step 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brill’s tagger – Example of rules for known words

Training on the Icelandic Frequency Dictionary

- GOOD:1505 BAD:9 SCORE:1496 RULE: \texttt{pos_0=sfg3eþ} \\
 \texttt{pos:\([-2,-1]=fp1en} \Rightarrow \texttt{pos=sfg1eþ} \\
 \text{Change tag } \texttt{sfg3eþ} \text{ to } \texttt{sfg1eþ} \text{ if one of the two previous tags is } \texttt{fp1en}. \\
 \text{This rule corrected 1505 errors in the initial tagging.}

- GOOD:836 BAD:38 SCORE:798 RULE: \texttt{pos_0=aþ} \\
 \texttt{pos:\([1,2]=nkeog} \Rightarrow \texttt{pos=ao} \\

- GOOD:563 BAD:20 SCORE:543 RULE: \texttt{pos_0=aþ} \\
 \texttt{pos:\([1,2]=nveog} \Rightarrow \texttt{pos=ao}
Brill’s tagger

Unknown words

- Labels unknown words as proper nouns if they start with a capital letter.
- Labels all other unknown words as common nouns.
- Then applies special templates (see page 155) for generating rules which change the tag of an unknown word from X to Y.
Brill’s tagger – Example of rules for unknown words

Training on the Icelandic Frequency Dictionary

- GOOD: 558 BAD: 3 SCORE: 555 RULE: pos=nken
 word::~1=~a ⇒ pos=sng
 - Change tag nken to sng if the last letter of the word is “a”.
 - This rule corrected 558 errors in the initial tagging but only added 3 errors.

- GOOD: 438 BAD: 6 SCORE: 432 RULE: pos=nken
 word::~3=~nni ⇒ pos=nveþg

- GOOD: 275 BAD: 4 SCORE: 271 RULE: pos=nheþ
 word::~3=~aði ⇒ pos=sfg3eþ