Tagging Icelandic text: A linguistic rule-based approach

Paper by Hrafn Loftsson
Presented by Haukur Kristinsson
What is the paper about?

Describes the design of a linguistic rule-based system for POS (Part of Speech) tagging Icelandic text.
POS Tagging

- Labelling words with the appropriate
 - Word class
 - Morphological features
- Each label is called a tag and is from a tagset
- Program that performs the tagging is called a tagger
- Tagging text is needed for several NLP tasks
 - Grammar correction
 - Syntactic parsing
 - Information extraction
 - Question-answering
 - Corpus annotation
Icelandic tag-set

- Main tagset, created during the making of the IFD ‘Icelandic Frequency Dictionary’
 - Large tag-set (about 660 tags)
- First character denotes the word class (Noun, Adjective, Verb etc.)
- Additional characters (at most 5) describe morphological features
 - Gender (í. Kyn)
 - Number (í. Flrt/Eint)
 - Case (í. Fallbeyging)
 - Article And Proper Nouns (For Nouns) (í. Greinir/Heiti)
 - Declension and Degree (For Adjectives) (í. Beyging og stig lýsingaro.)
 - Mood – Person – Tense (For Verbs) (Í. Háttur – Persóna – Tíð)
Semantics of the tag-set

Semantics for nouns and adjectives

<table>
<thead>
<tr>
<th>Char #</th>
<th>Category/Feature</th>
<th>Symbol – semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Word class</td>
<td>n-noun, l-adjective</td>
</tr>
<tr>
<td>2</td>
<td>Gender</td>
<td>k-masculine, v-feminine, h-neuter, x-unspecified</td>
</tr>
<tr>
<td>3</td>
<td>Number</td>
<td>e-singular, f-plural</td>
</tr>
<tr>
<td>4</td>
<td>Case</td>
<td>n-nominative, o-accusative, d-dative, e- genitive</td>
</tr>
<tr>
<td>5</td>
<td>Article</td>
<td>g-with suffixed definite article (nouns)</td>
</tr>
<tr>
<td>6</td>
<td>Declension</td>
<td>s-strong, v-weak (adjectives)</td>
</tr>
<tr>
<td></td>
<td>Proper noun</td>
<td>m-person name, o-place name, s-other</td>
</tr>
<tr>
<td></td>
<td>Degree</td>
<td>f-positive, m-comparative, e-superlative (adjectives)</td>
</tr>
</tbody>
</table>

Example:

Untagged:
Fallegu hestarnir stukku

Tagged:
Fallegu/lkfnvf
hestarnir/nkfnng
Stukku/sfg3fg

Semantics for verbs

<table>
<thead>
<tr>
<th>Char #</th>
<th>Category/Feature</th>
<th>Symbol – semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Word class</td>
<td>s-verb (except for past participle)</td>
</tr>
<tr>
<td>2</td>
<td>Mood</td>
<td>n-infinitive, b-imperative, f-indicative, v-subjunctive, s-supine, l-present participle</td>
</tr>
<tr>
<td>3</td>
<td>Voice</td>
<td>g-active, m-middle</td>
</tr>
<tr>
<td>4</td>
<td>Person</td>
<td>1-1st person, 2-2nd person, 3-3rd person</td>
</tr>
<tr>
<td>5</td>
<td>Number</td>
<td>e-singular, f-plural</td>
</tr>
<tr>
<td>6</td>
<td>Tense</td>
<td>n-present, p-past</td>
</tr>
</tbody>
</table>
Function of a Tagger

- Remove ambiguity (lexical phase)
 - First, introduce the ‘tag profile’ for each word
 - Done by precompiled lexicon and a unknown word guesser
 - Second, do a morphical disambiguation on the word

- Two main methodologies to disambiguate
 - Data-driven
 - Uses pre-tagged training corpus
 - Machine learning to automatically derive a language model from the corpus
 - Less human effort
 - Linguistic rule-based approach (handcrafted)
 - Uses hand-crafted rules or constraints to eliminate appropriate POS tags (depending on the context)
 - More Human effort
Tagging methods

- In this research paper we discuss 2 methods
 - Data-driven tagging methods
 - Methods that are ‘standard’ today
 - Easier to develop
 - Taggers that we will be compared to IceTagger
 - Linguistic rule-based tagging methods
 - Methods that are used in IceTagger
 - Harder to develop
- Important to develop different approaches for a particular language
 - They produce uncorrelated errors
 - Can be used together with a simple voting to yield better results
Data-driven tagging methods

- Types of data-driven taggers used in this research
 - Probabilistic trigram taggers
 - Tag words by optimizing the product of lexical and contextual probabilities.
 - Trigram tagger based on Markov model (TnTTagger)
 - Tagger based on maximum entropy approach (MXPOSTTagger)
 - Transformation-based learning approach tagger (fnTBLTagger)
 - Rules based but not hand-crafted, rules acquired from a pre-tagged corpus
Linguistic rule-based tagging methods

- Purpose to tag a specific language
- Purpose of the rules
 - Assign tags to words depending on the context
 - Remove illegitimate tags from words based on context
- Time consuming task (because it can be many hand-crafted rules)
Unknown word guessing

- Main problem of a two-stage tagger
 - Guessing tag profile for unknown words.
- Constantly extending the lexicon to minimize unknown words not practical
 - New words constantly being introduced into a language
- Good quality unknown word guesser is essential to develop a high accuracy tagger.
Unknown word guessing

- Most unknown word guessers use
 - Morphological/Compound analysis
 - Analyzes morphologically related words already known to the lexicon
 - More accurate
 - Ending analysis
 - Analyzes solely on the word’s ending
 - Combination of both
Tagging Icelandic

- Icelandic language is a morphologically complex language
 - Large tag-set
- Linguistic rule-based system for POS Icelandic text
- First we introduce the ‘tag profile’ for each word with
 - Pre-compiled lexicon
 - IceMorphy
- Main components
 - IceTagger, a disambiguator.
 - Uses about 175 rules along with heuristics
 - IceMorphy, the unknown word guesser.
IceMorphy

- Purpose to generate the tag profile for given word.
- It performs
 - Morphological analysis (Most accurate)
 - Classify the word as a member of morphological class
 - 18 morphological classes for nouns, 5 for adjectives and 5 for verbs
 - Class is guessed based on the words morphological suffix
 - After finding the suffix (and the word class) the stem is extracted from the word (stem+suffix)
 - All possible suffixes for the stem are generated and searched until finding a word in the same morphological class.
 - Compound analysis
 - Removes prefixes from the word and searches in the lexicon
 - If not it sends it to the morphological analysis.
 - Example: nýfæddur -> looks up ‘fæddur’ and gives ‘nýfæddur’ the same tag.
It Performs (continue..)

• Ending analysis (Less accurate)
 • Used if nothing was found by morphological nor compound analysis fails
 • Uses the end of the word to look up in a ending lexicon (hand-written and generated ending from a corpus)
 • Example -> bleðillinn -> based on the ending ‘llinn’ we get the four tags ‘nkeng_nkeog_lkensf_lkeosf’ only the first tag is correct so you see how unaccurate it is

• Last important feature – Tagging profile gaps
 • When word has some missing tags in its set of possible tags.
 • For each noun, adjective or verb of a particular morphological class, IceMorphy generates all missing tags with all the methods above.
 • Konu ‘woman’ comes with only nveo tag, the methods detects from the suffix ‘u’ that it’s a feminine noun class and it has the same form in singular accusative, dative and genitive. So it adds nvep and nvee to the word
IceTagger – Disambiguation Process

- First step of the disambiguation is to identify idioms (í. Orðatiltæki)
 - F.ex. bigrams and trigrams (they often get tagged ambiguously)
 - For example: “of the”, “in the”, “to the” etc…
 - Identified by examining lexical forms of adjacent words
 - Extracted all trigrams from the IFD corpus that occurred at least ten times with the same tag sequence
 - Hand constructed a list of unambiguous bigrams from a test corpora based on IFD.

- Second step of the disambiguation is identifying phrasal-verb
 - Word that are adjacent in text (f.ex verb-particle pair: fara út ‘go out’)
 - Where the particle is an adverb (because it’s associated with a particulate verb) but not a preposition
 - Automatically generated from IFD corpus
IceTagger – Disambiguation Process

- Third step is application of **local elimination rules**
 - Disambiguation based on a local context
 - Window of 5 words
 - Two words to the left and two words to the right
 - Focus word in the middle
 - L1/R1 L2/R2 denotes one and two to the left/right of the word
 - Purpose is to eliminate inappropriate tags from words
 - Example -> við vorum alltaf ein ‘we were always alone’
 - við can have following five tags: **ao_ap_fp1fn_aa_nkeo**
 - For example a rule for preposition `<condition> = R1.isOnlyWordClass(Verb)` eliminates prepositions tags in this context because the following word is a verb, leaving **fp1fn_aa_nkeo**.
IceTagger – Heuristics

- When disambiguation has finished every sentence is sent to the Heuristics module
- Its purpose is to perform
 - Grammatical function analysis
 - Guess prepositional phrases
 - Use acquired knowledge to force feature agreement where appropriate
IceTagger - Heuristics

- The Heuristics repeatedly scan each sentence and perform the following (in order)
 - 1. Mark prepositional phrases
 - 2. Mark verbs
 - 3. Mark subjects of verbs
 - 4. Force subject-verb agreement
 - 5. Mark objects of verbs
 - 6. Force subject-object agreement
 - 7. Force verb-object agreement
 - 8. Force agreement between nominal's
 - 9. Force prepositional phrase agreement
Heuristic Example

- Ýg/\textit{fp1en} för/\textit{sfg3ep_sfg1ep} svar\textit{tar/lvfsf_lvnsf}
götur/\textit{nvfo_nvfn\ i_ab_ao} vestur\textit{átt/nveo_nvep}

1. Marks ‘í vesturátt’ as a prepositional phrase
 - ‘í’ is a preposition and ‘vesturátt’ is a nominal.

2. Marks ‘för’ as a verb

3. Marks ‘ég’ as a subject, as it is a subject of the verb för.

4. Removes \textit{sfg3ep} from ‘för’
 - The subject ‘ég’ is 1st person.

5. Marks ‘götur’ as the object of the verb ‘för’

7. Removes the nominative tag \textit{nvfn} from ‘götur’
 - The verb ‘för’ demands an accusative (i. hf.) object (this is a rule obtained from a special lexicon that is made for helping verb-object agreement)

8. Removes nominative (i. Nf.) tag \textit{lvfnsf} from the adjective ‘svar\textit{tar}’
 - The already disambiguated noun ‘götur’ (nominal) — Agreement between nominals.
Heuristic Example

- Ég/fp1en fór/sfg3ep_sfg1ep svartar/lvfsf_lvnsf götur/nvfo_nvfn i/ap_ao vesturátt/nveo_nvep
 - 9. Removes the dative (í. Þgf.) tag aþ from preposition ‘í’ and the dative tag nveþ from the nominal ‘vesturátt’.
 - The preposition pair fór-í governs accusative (í. Þf.) case
 - Rule obtained from a lexicon that is made specially to aid prepositional phrase agreement
- Ég/fp1en fór/sfg3ep_sfg1ep svartar/lvfsf_lvnsf götur/nvfo_nvfn i/ap_ao vesturátt/nveo_nvep
- Ég/fp1en fór/sfg3ep svartar/lvfsf götur/nvfo i/ao vesturátt/nveo
Evaluvation/Conclusion

- Compared Linguistic rule-based tagger (IceTagger) with IceMorphy to three state-of-the-art data-driven taggers
 - Obtained a higher accuracy when tagging Icelandic w. the large tagset
 - Main lexicon is obtained from the tagged corpus
 - The average tagging accuracy of IceTagger is 91.54%
 - The highest average tagging accuracy from the data-driven taggers is 90.44% (w. gap filling from IceMorphy 91.18%)
- With combining IceTagger with 2 highest data-driven taggers (fnTBL and TnT) he accuracy raised to 92.95%.