Tagging Icelandic text: A linguistic rule-based approach

Paper by Hrafn Loftsson Presented by Haukur Kristinsson

What is the paper about?

Describes the design of a linguistic rule-based system for POS (Part of Speech) tagging Icelandic text

POS Tagging

- Labelling words with the appropriate
 - Word class
 - Morphological features
- Each label is called a tag and is from a tagset
- Program that performs the tagging is called a tagger
- Tagging text is needed for several NLP tasks
 - Grammar correction
 - Syntatactic parsing
 - Information extraction
 - Question-answering
 - Corpus annotation

Icelandic tag-set

- Main tagset, created during the making of the IFD 'Icelandic Frequency Dictionary'
 - Large tag-set (about 660 tags)
- First character denotes the word class (Noun, Adjective, Verb etc.)
- Additional characters (at most 5) describe morphological features
 - Gender (í. Kyn)
 - Number (í. Flrt/Eint)
 - Case (í. Fallbeyging)
 - Article And Proper Nouns (For Nouns) (í. Greinir/Heiti)
 - Declension and Degree (For Adjectives) (í. Beyging og stig lýsingaro.)
 - Mood Person Tense (For Verbs) (Í. Háttur Persóna Tíð)

Semantics of the tag-set

Semantics for nouns and adjectives

Char	Category/	Symbol – semantics
#	Feature	
1	Word class	n-noun, l-adjective
2	Gender	k-masculine, v-feminine, h-neuter, x-unspecified
3	Number	e-singular, f-plural
4	Case	n-nominative, o-accusative, p-dative, e-genitive
5	Article	g-with suffixed definite article (nouns)
5	Declension	s-strong, v-weak (adjectives)
6	Proper noun	m-person name, ö-place name, s-other
6	Degree	f-positive, m-comparative, e-superlative
	-	(adjectives)

Semantics for verbs

Char	Category/	Symbol – semantics
#	Feature	
1	Word class	s-verb (except for past participle)
2	Mood	n -infinitive, b -imperative, f -indicative,
		v-subjunctive, s-supine, l-present participle
3	Voice	g-active, m-middle
4	Person	1-1 st person, 2-2 nd person, 3-3 rd person
5	Number	e-singular, f-plural
6	Tense	n-present, þ-past

Example:

Untagged: Fallegu hestarnir stukku

Tagged: Fallegu/**lkfnvf** hestarnir/**nkfng** Stukku/**sfg3fg**

Function of a Tagger

- Remove ambiguity (lexical phase)
 - First, introduce the 'tag profile' for each word
 - Done by precompiled lexicon and a unknown word guesser
 - Second, do a morphical disambiguation on the word
- Two main methodologies to disambiguate
 - Data-driven
 - Uses pre-tagged training corpus
 - Machine learning to automaticlly derive a language model from the corpus
 - Less human effort
 - Linguistic rule-based approach (handcrafted)
 - Uses hand-crafted rules or constraints to eliminate appropriate POS tags (depending on the context)
 - More Human effor

Tagging methods

- In this research paper we discuss 2 methods
 - Data-driven tagging methods
 - Methods that are 'standard' today
 - Easier to develop
 - Taggers that we will be compared to IceTagger
 - Linguistic rule-based tagging methods
 - Methods that are used in IceTagger
 - Harder to develop
- Important to develop different approaches for a particular language
 - They produce uncorrelated errors
 - Can be used together with a simple voting to yield better results

Data-driven tagging methods

- Types of data-driven taggers used in this research
 - Probabilistic trigram taggers
 - Tag words by optimizing the product of lexical and contextual probabilities.
 - Trigram tagger based on Markov model (TnT Tagger)
 - Tagger based on maximum entropy approach (MXPOST Tagger)
 - Transformation-based learning approach tagger (fnTBL Tagger)
 - Rules based but not hand-crafted, rules acquired from a pre-tagged corpus

Linguistic rule-based tagging methods

- Purpose to tag a specific language
- Purpose of the rules
 - Assign tags to words depending on the context
 - Remove illegitimate tags from words based on context
- Time consuming task (because it can be many handcrafted rules)

Unknown word guessing

- Main problem of a two-stage tagger
 - Guessing tag profile for unknown words.
- Constantly extending the lexicon to minimize unknown words not practical
 - New words constantly being introduced into a language
- Good quality unknown word guesser is essential to develop a high accuracy tagger.

Unknown word guessing

- Most unknown word guessers use
 - Morphological/Compound analysis
 - Analyzes morphologically related words already known to the lexicon
 - More accurate
 - Ending analysis
 - Analyzes solely on the word's ending
 - Combination of both

Tagging Icelandic

- Icelandic language is a morphologically complex language
 - Large tag-set
- Linguistic rule-based system for POS Icelandic text
- First we introduce the 'tag profile' for each word with
 - Pre-compiled lexicon
 - IceMorphy
- Main components
 - IceTagger, a disambiguator.
 - Uses about 175 rules along with heuristics
 - IceMorphy, the unknown word guesser.

IceMorphy

- Purpose to generate the tag profile for given word.
- It performs
 - Morphological analysis (Most accurate)
 - Classify the word as a member of morphological class
 - 18 morphological classes for nouns, 5 for adjectives and 5 for verbs
 - Class is guessed based on the words morphological suffix
 - After finding the suffix (and the word class) the stem is extracted from the word (stem+suffix)
 - All possible suffixes for the stem are generated and searched until finding a word in the same morphological class.
 - Compound analysis
 - Removes prefixes from the word and searches in the lexicon
 - If not it sends it to the morphological analysis.
 - Example: nýfæddur -> looks up 'fæddur' and gives 'nýfæddur' the same tag.

IceMorphy

- It Performs (continue..)
 - Ending analysis (Less accurate)
 - Used if nothing was found by morphological nor compound analysis fails
 - Uses the end of the word to look up in a ending lexicon (hand-written and generated ending from a corpus)
 - Example -> bleðillinn -> based on the ending 'llinn' we get the four tags 'nkeng_nkeog_lkensf_lkeosf' only the first tag is correct so you see how unaccurate it is
- Last important feature Tagging profile gaps
 - When word has some missing tags in its set of possible tags.
 - For each noun, adjective or verb of a particular morphological class, IceMorphy generates all missing tags with all the methods above.
 - Konu 'woman' comes with only **nveo** tag, the methods detects from the suffix 'u' that it's a feminine noun class and it has the same form in singular accusative, dative and genitive. So it adds **nvep** and **nvee** to the word

IceTagger – Disambiguation Process

- First step of the disambiguation is to identify idioms (í. Orðatiltæki)
 - F.ex. bigrams and trigrams (they often get tagged ambiguously)
 - For example: "of the", "in the", "to the" etc...
 - Identified by examining lexical forms of adjacent words
 - Extracted all trigrams from the IFD corpus that occurred at least ten times with the same tag sequence
 - Hand constructed a list of unambiguous bigrams from a test corpora based on IFD.
- Second step of the disambiguation is **identifying phrasal-verb**
 - Word that are adjacent in text (f.ex verb-particle pair: fara út 'go out')
 - Where the particle is an adverb (because it's associated with a particulate verb) but not a preposition
 - Automatically generated from IFD corpus

IceTagger – Disambiguation Process

- Third step is application of **local elimination rules**
 - Disambiguation based on a local context
 - Window of 5 words
 - Two words to the left and two words to the right
 - Focus word in the middle
 - L1/R1 L2/R2 denotes one and two to the left/right of the word
 - Purpose is to eliminate inappropriate tags from words
 - Example -> við vorum alltaf ein 'we were always alone'
 - við can have following five tags: ao_ab_fp1fn_aa_nkeo
 - For example a rule for preposition <condition> = R1.isOnlyWordClass(Verb) eliminates prepositions tags in this context because the following word is a verb, leaving fp1fn_aa_nkeo.

IceTagger – Heuristics

- When disambiguation has finished every sentence is sent to the Heuristics module
- Its purpose is to perform
 - Grammatical function analysis
 - Guess prepositional phrases
 - Use acquired knowledge to force feature agreement where appropriate

IceTagger - Heuristics

- The Heuristics repeatedly scan each sentence and perform the following (in order)
 - 1. Mark prepositional phrases
 - 2. Mark verbs
 - 3. Mark subjects of verbs
 - 4. Force subject-verb agreement
 - 5. Mark objects of verbs
 - 6. Force subject-object agreement
 - 7. Force verb-object agreement
 - 8. Force agreement between nominal's
 - 9. Force prepositional phrase agreement

Heuristic Example

- Ég/fp1en fór/sfg3eþ_sfg1eþ svartar/lvfosf_lvnsf götur/nvfo_nvfn í/aþ_ao vesturátt/nveo_nveþ
- 1. Marks 'í vesturátt' as a prepositional phrase
 - 'i' is an preposition and 'vesturátt' is a nominal.
- 2. Marks 'fór' as an verb
- 3. Marks 'ég' as a subject, as it is a subject of the verb fór.
- 4. Removes sfg3eb from 'fór'
 - the subject 'ég' is 1st person.
- 5. Marks 'götur' as the object of the verb 'fór'
- 7. Removes the nominative tag nvfn from 'götur'
 - The verb 'fór' demands an accustative (í. þf.) object (this is a rule obtained from a special lexicon that is made for helping verb-object aggreement)
- 8. Removes nomitive (i. Nf.) tag lvfnsf from the adjective 'svartar'
 - The already disambiguated noun 'götur' (nominal) Agreement between nominals.

Heuristic Example

- Ég/fp1en fór/sfg3eþ_sfg1eþ svartar/lvfosf_lvnsf götur/nvfo_nvfn í/aþ_ao vesturátt/nveo_nveþ
 - 9. Removes the dative (í. Þgf.) tag aþ from preposition 'í' and the dative tag nveþ from the nominal 'vesturátt'.
 - The preposition pair fór-í governs accusative (í. Þf.) case
 - Rule obtained from a lexicon that is made specially to aid prepositional phrase agreement)
- Ég/fp1en fór/sfg3eþ_sfg1eb svartar/lvfosf_lvnsf götur/nvfo_nvfn í/ab_ao vesturátt/nveo_nveb
- Ég/fp1en fór/sfg3eþ svartar/lvfosf götur/nvfo í/ao vesturátt/nveo

Evaluvation/Conclusion

- Compared Linguistic rule-based tagger (IceTagger) with IceMorphy to three state-of-the-art data-driven taggers
 - Obtained a higher accuracy when tagging Icelandic w. the large tagset
 - Main lexicon is obtained from the tagged corpus
 - The avarage tagging accuracy of IceTagger is 91.54%
 - The highest avarage tagging accuracy from the data-driven taggers is 90.44% (w. gap filling from IceMorphy 91.18%)
 - With combining IceTagger with 2 highest data-driven taggers (fnTBL and TnT) he accuracy raised to 92.95%.