T-(538|725)-MALV, Natural Language Processing
Regular expressions

Hrafn Loftsson1 Hannes Högni Vilhjálmsson1

1School of Computer Science, Reykjavik University

September 2008
Outline

1. Strings and languages

2. Regular expressions
Outline

1 Strings and languages

2 Regular expressions
An alphabet

- A finite set of symbols or characters.
- Example: \{0,1\} is the binary alphabet.

A string

- A string \(s \) from the alphabet \(\Sigma \) is a finite sequence of characters drawn from \(\Sigma \).
- \(|s|\) denotes the length of \(s \).
- \(\epsilon \) denotes the empty string; its length is 0.
Strings

An alphabet

- A finite set of symbols or characters.
- Example: \{0,1\} is the binary alphabet.

A string

- A string \(s \) from the alphabet \(\Sigma \) is a finite sequence of characters drawn from \(\Sigma \).
- \(|s| \) denotes the length of \(s \).
- \(\epsilon \) denotes the empty string; its length is 0.
A language

Definition

- A set of strings.
- Example: \emptyset, {ϵ}, {ab, ba}, {011, 101, 111}.

Concatenation and multiplication

- If x and y are strings then their concatenation xy is a string obtained by concatenating y to x.
- $s\epsilon = \epsilon s = s$
- $s^0 = \epsilon$, $s^1 = s$, $s^2 = ss$,
- $s^i = ss^{i-1}$, $i > 0$
A language

Definition
- A set of strings.
- Example: \emptyset, $\{\epsilon\}$, $\{ab,ba\}$, $\{011,101,111\}$.

Concatenation and multiplication
- If x and y are strings then their concatenation xy is a string obtained by concatenating y to x.
- $s\epsilon = \epsilon s = s$
- $s^0 = \epsilon$, $s^1 = s$, $s^2 = ss$,
- $s^i = ss^{i-1}$, $i > 0$
Operations on languages

- \(L \cup M = \{ s \mid s \in L \text{ or } s \in M \} \)
- \(LM = \{ st \mid s \in L \text{ and } t \in M \} \)
- Kleene closure: 0 or more concatenations of \(L \)
 - \(L^* = \bigcup_{i=0}^{\infty} L^i \)
- Positive closure: 1 or more concatenations of \(L \)
 - \(L^+ = \bigcup_{i=1}^{\infty} L^i \)
Examples of languages

$L = \{A, B, \ldots, Z, a, b, \ldots, z\}$ and $D = \{0, 1, \ldots, 9\}$. What languages (set of strings) are:

- $L \cup D$
- LD
- L^4
- L^*
- $L(L \cup D)^*$
- D^+
1. Strings and languages

2. Regular expressions
A language used to describe a set of strings.

Very powerful devices to describe patterns to search for in texts.

Each regular expression \(r \) denotes a language \(L(r) \).

Are composed of ordinary text characters (e.g. \(abc \)) and of metacharacters, e.g. “*” and “+”.

Complex regex can be constructed from simple regex using special rules.
For an alphabet Σ:

1. ϵ is a regex denoting $\{\epsilon\}$.
2. If $a \in \Sigma$, then a is a regex denoting $\{a\}$.
3. Let us assume r and s are regex denoting the languages $L(r)$ and $L(s)$. Then:
 - $(r)| (s)$ is a regex denoting $L(r) \cup L(s)$.
 - $(r)(s)$ is regex denoting $L(r)L(s)$.
 - $(r)^*$ is a regex denoting $(L(r))^*$.
 - (r) is a regex denoting $L(r)$.

Loftsson, Vilhjálmsson
Corpora
Regular expressions

Operator precedence:

- * has the highest precedence.
- Concatenation next highest.
- | has the lowest precedence.

Accordingly: $(a)|((b)^*(c)) = a|b^*c$
Examples of regular expressions

Which languages denote the regular expressions:

- $a|b$
- $(a|b)(a|b)$
- a^*
- $a|b^*c$
More about regular expressions

Other characters having a special meaning

In many tools which support regex the following characters have a special meaning:

- ? + . {n}
- See descriptions in table 2.9 page 37
More about regular expressions

Character classes

- A list of characters between square brackets matches any character contained in the list.
- The regex \([abc]\) means one occurrence of either a, or b or c \((a|b|c)\).

Complement and range

- \[^a\] means any character that is not an a.
- \([a-zA-Z]\) means a, b, ..., z, A, B, ..., Z.
More about regular expressions

Character classes

- A list of characters between square brackets matches any character contained in the list.
- The regex \[abc\] means one occurrence of either a, or b or c (a|b|c).

Complement and range

- [^a] means any character that is not an a.
- [a-zA-Z] means a, b, ... , z, A, B, ... , Z.
String matching can be ambiguous.

For example, the string $s =$“aabbc” and the regex a^+b^*

This regex matches the following substrings of s: $a, aa, ab, aab, abb, aabb$

Disambiguation – two rules

Most tools which support regex:

- They match as early as they can in a string.
- They match as many characters as they can.

Thus, a^+b^* matches $aabb$, the longest match.
Longest match

Ambiguity

- String matching can be ambiguous.
- For example, the string $s = \text{"aabbc"}$ and the regex $a^+ b^*$
- This regex matches the following substrings of s: a, aa, ab, aab, abb, $aabb$

Disambiguation – two rules

Most tools which support regex:

- They match as early as they can in a string.
- They match as many characters as they can.
- Thus, $a^+ b^*$ matches $aabb$, the longest match.
A regex can be converted automatically to an FSA.
- The method is, for example, discussed in the *Compiler* course.
- An FSA can accept the set of strings which a particular regex stands for.
Various tools and programming languages

- **grep/egrep** (Unix/Linux tool)
 - `grep 'ab*c' myFile`
 - Prints all the lines from the file *myFile* containing the strings *ac, abc, abbc, abbbbc*, etc.
 - In Windows you can install **Cygwin** http://www.cygwin.com/ which is a Linux-like environment for Windows.

- Support for regular expressions is in various contemporary languages, e.g. Perl, Python, Java, C#.