IceParser: An Incremental Finite-State Parser for Icelandic

Hrafn Loftsson & Eiríkur Rögnvaldsson 2007
Commentary: Matthew Whelpton
Overview

- What is IceParser?
- What does IceParser output?
- Why is the input to IceParser challenging?
- How well does IceParser work?
- What kinds of errors does IceParser make?
What is *IceParser*?

- *IceParser* is
 - the first parser published for Icelandic
 - a shallow parser
 - which follows the constructive method of parsing
 - working incrementally on the input
 - using finite state transducers
 - implemented in Java
A shallow parser

- Full parsing
 - Complete parse tree
 - every constituent identified
 - from root to leaves

- Shallow parsing
 - Only major chunks of the sentence are analysed
 - in particular the constituent relations of the verb to other phrases is not made explicit
A shallow parser

Shallow parsers are

– sufficient in most cases for
 ▪ information extraction
 ▪ text summarisation
 ▪ some kinds of grammar checking
– well suited to handling
 ▪ low quality and fragmented input
 ▪ spoken language
the constructive method

Grefenstette, 1996; Abney, 1997

– introduces syntactic boundary tags into the input string
 ▪ the man left
 ▪ [NP the man NP] [VP left VP]

– recognises the positioning of tags on the basis of lexico-syntactic patterns
 ▪ a determiner followed by a noun are a noun phrase when followed by a verb
the constructive method

- finite state transducers
 - one transducer for each kind of boundary to be introduced (e.g. NP or VP)

- cascade
 - individual transducers are strung together
 - output from one is input to the next

- incremental
 - so the parsing is incremental, i.e. in steps
 - boundary tags are added in successive sweeps of the text
Java implementation

- Implemented in Java with JFlex
 - creates a Deterministic Finite-state Automaton (DFA)
 - extremely efficient
- JFlex rather than XFST because IceParser part of the NLP toolkit for Icelandic – all in Java
What does *IceParser* output?

- **Input**
 - POS tagged text
 - Icelandic Frequency Dictionary tagset

- **Output**
 - Shallow annotation schema (hand-made for IceParser)
 - Constituent structure annotation (Module 1: 14 transducers)
 - Syntactic function annotation (Module 2: 8 transducers)
Constituent Structure

- **Constituents**
 - Core phrases: AdvP, AP, NP, PP, VP
 - Clause building: CP (coordinating), SCP (subordinating)
 - Other: InjP (interjections), MWE (multi-word expressions, extra-syntactic collocations)

- **Bottom-up analysis**
 - most embedded constituents first
 - AdvP > AP > NP > ...
 - Generally adverbs modify adjectives and adjectives modify nouns
More on constituents

- Sequences of agreeing AP and NP
 - APs; NPs

- VP subclassified
 - VP = finite verb phrase
 - VPi = infinitival verb phrase
 - VPb = verb phrase with predicative complement (cf *vera* “be”)
 - VPs = supine verb phrase
 - VPp = past participle verb phrase
 - VPg = present participle verb phrase

- Crucially the VP does NOT include complements and modifiers (shallow parsing), contrary to linguistic evidence!
Transducer Operation

Transducer *Phrase_AdvP*

- Pattern Recognition
 - Adv=$\{\text{WordSpaces}\}\{\text{AdvTag}\}$
 - $\{\text{WordSpaces}\}$ = word characters followed by whitespace
 - $\{\text{AdvTag}\}$ = adverb POS tag

- Action
 - Input: mjög aa
 - Output: [AdvP mjög aa AdvP]
Grammatical Functions

- Eight grammatical functions
 - *SUBJ - subject
 - *OBJ - object
 - *OBJAP – object in AP
 - *OBJNOM – nominative object
 - *IOBJ – indirect object
 - *QUAL – genitive qualifier
 - *COMP - complement
 - *TIMEX – temporal expression
More on grammatical functions

The various subject, object and complement labels allow a “relative position indicator”

– Where is the function-assigning predicate relative to the phrase

 ▪ *SUBJ> - predicate follows subject
 ▪ *SUBJ< - predicate precedes subject
Func_SUBJ transducer

- NomSubj={NPNom}|{NPsNom}
- VPorVPBe={VP}|{VPBe}
- SubjVerb=({NomSubj}{WS}+{VPorVPBe}|{DatSubj}{WS}+{VPDat}|{AccSubj}{WS}+{VPAcc}
- {VPDat} – recognises verbs that take dative subjects (listed as regular expressions)
- Output
 - {*SUBJ> [NP vagnstjóriminn NP] *SUBJ>} [VP sá VP] {*OBJ< [NP mig NP] *OBJ<}
What´s the challenge? Icelandic!

- Morphologically rich (inflection)
 - Nouns: 3 genders, 4 cases, 2 numbers
 - Suffixed definite article: 3 genders, 4 cases, 2 numbers
 - Adjectives: strong/weak, 3 degrees, 3 genders, 4 cases, 2 numbers
 - Verbs: 3 persons, 2 moods, 2 tenses, 2 voices (and more)

- Icelandic Frequency Dictionary tagset
 - Approx 660 tags

- Relatively free word order at the main phrasal level
 - Subject and object noun phrases
 - Preposition phrases
 - Adverbial phrases
How well does *IceParser* work?

- **Gold Standard**
 - Icelandic Frequency Dictionary
 - 509 sentences (8281 tokens)
 - Manually annotated by two experts using the *IceParser* annotation scheme

- **F-measure** = \(2 \times \text{precision} \times \text{recall} / (\text{precision} + \text{recall})\)

- **Scoring program**
 - *Evalb* (Sekine and Collins, 1997)
<table>
<thead>
<tr>
<th>Type</th>
<th>Parser (Tagger)</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tagging</td>
<td>IceParser IFD</td>
<td>96.7%</td>
</tr>
<tr>
<td></td>
<td>IceParser IceTagger</td>
<td>91.9%</td>
</tr>
<tr>
<td></td>
<td>[tagger 91.1%]</td>
<td>c. -5%</td>
</tr>
<tr>
<td></td>
<td>Knutsson et al. (2003) Swedish</td>
<td>88.7%</td>
</tr>
<tr>
<td></td>
<td>Kokkinakis and Johansson-Kokkinakis (1999) Swedish</td>
<td>93.3%</td>
</tr>
<tr>
<td>Function</td>
<td>IceParser IFD</td>
<td>84.3%</td>
</tr>
<tr>
<td>Tagging</td>
<td>IceParser IceTagger</td>
<td>75.3%</td>
</tr>
<tr>
<td></td>
<td>Müller (2004) German</td>
<td>82.5%</td>
</tr>
</tbody>
</table>
Errors

One AdvP instead of two
- \([PP \text{ um } [NP \text{ það NP}] PP]\) [VP vissi VP] [NP stelpan NP] [AdvP ekki þá AdvP]
- (about that knew girl not then)
- “ekki” [not] applies independently to the preceding sentence, not to “þá” [then]
- \([PP \text{ um } [NP \text{ það NP}] PP]\) [VP vissi VP] [NP stelpan NP] [AdvP ekki AdvP] [AdvP þá AdvP]
Errors

- **Definite noun – adjective inversion**
 - [NP árin NP] [AP gullnu AP]
 - (years-the golden)
 - [NP árin [AP gullnu AP] NP]

- IceParser doesn’t have a transducer pattern for post-nominal adjectives
Errors

- Overapplication of NP grouping based on case agreement (Phrase_NPs Transducer)
 - [AP sterkur AP] [VPb var VPb] [NPs [NP hann NP] [CP og CP] [NP íþróttamaður NP] NPs] [AP ágætur AP]
 - (strong was he and athlete fine)
 - Inversion of first clause means two clausal subjects side by side and therefore grouped.
 - [AP sterkur AP] [VPb var VPb] [NP hann NP] [CP og CP] [NP íþróttamaður [AP ágætur AP] NP]
Errors

- **Subject postposing**
 - `[VPb er VPb] [AdvP ekki AdvP] [VPI að koma VPI] {*SUBJ [NP matur NP] *SUBJ}?`
 - *(is not to come food?)*
 - IceParser correctly identifies the subject but not where its predicate is - `[VPb er VPb]`.
 - This is because the infinitive (VPI) intervenes.
 - `[VPb er VPb] [AdvP ekki AdvP] [VPI að koma VPI] {*SUBJ< [NP matur NP] *SUBJ<}?`
Errors in the phrase structure module can cause additional errors in the syntactic function module.

- (and took out own cans)
- \([\text{CP og CP} [\text{VP tóku VP}] [\text{AdvP fram AdvP} [\text{NP [AP eigin AP] dósir NP}]]\)
- The original error produces an incorrect object labeling
 - The object doesn’t in fact include “fram”
IceParser

Summary

- What is IceParser?
 - incremental finite state parser for Icelandic
- What does IceParser output?
 - text tagged with constituent and function boundary labels
- Why is the input to IceParser challenging?
 - because Icelandic is a b$r#d!
- How well does IceParser work?
 - competitively well!
- What kinds of errors does IceParser make?
 - see above!