
,.Oqre ?D t+-ScOraaer's {r*icle
b5 Fetix Kerger , Po,.gk* ?ubl<han

3D Stortup Seeuence

I
uenGS

This time we are working on a blank sheet.

-1. Start with an empty code file, include ogre3d.h. and create an empty
main {unction:

f include "ogre\ogre. h"

int main (void)

i

reEurn 0;

i

2. Create an instance of the Ogre 3D Rooc class; this class needs the name of the

"pluqin . cfq ":
Oqre::Root1 rooL = new Ogre::RooE("plugins d.cfg"),

lf the config dialog can't be shown or the user cancels it, close the application:

if (| rooE- >showconf igDialog O)

{

)

Create a render window:

ogre: :tendelwindow" window = rooL->iniEialise(true. "OgrelD
Begiffiels Guide");

Next create a new scene manager:

Ogre::SceneManagerr sceneManage! = root-
>c!eateSceneManager (Ogre : : ST_GENBRIC) ;

Create a camera and name it camera:

Ogre : : Camerar camera = sceneManager- >createcamera ("Camera ") ;

camera- >setPosition (Ogre : : vecEorS 10, 0, 50)) t
camera- >lookAL (ogre: :vector3 (0,0,0)) ;
camera- >setNearCI j.pDistance (5),

With this camera, create a vieb.port and set the background color to black:

Ogre: :Viewpolt* viewporE = window->addviewporL (camera) ,

viewport- >setBackgroundcolour (ogre : : colourvalue (0. 0, 0. 0, 0. 0)) ;

The 0gre 3D Stanu[SGq

I

We hove covered o lot oI ground in the progress of this book. This chopter is
I

going to cover one of the few topics left: how to creote our own applicotion
I

I without relying on lhe ExampleApplication. Afer we hove covered this
I

I bpic, this chopter is going to repeot some of the topics from the previous I

I chapters to moke o demo ofthe things we hove learned using our new open

I opplicotion closs-
I

I

ln this chaptet we will:

. Learn how to start Ogre 3D ours€lves

a Parse resources. cfg to load the models we need

. Combine things from the previous chaptere to make a small demo application

showing off the things we have learned

5o let's get on with it...

Starting 0gte 30
Up until now the ExampleApplication class has started and initialized Ogre 3D for us;

now we are goinB to do it ourselves.

3.

4-

5.

6-

7.

8. trtow, use this viewport to set the aspect ratio ofthe camera:

camera- >seEAspectRatio {Ogre : : Real (viewport - >getActualwidth ()) /
ogre: :Rea1 (viewport- >getActualHej'ght O)) ;

9. Finally, tell the root to start rendefing:

,ooE- >startRendering (),

IO, Compile and run the application; you should see the normal config dialog and then

a black window. This window can't be closed bY pressing Fscape because we haven't

added key handling yet. You can close the application by pressing cfRt+C in the

console the aoDlication has been started from.

The Oqte 3D Stoduo Sequence

Using the roor instance, we let Ogre 3D show the config dialog to the user in step 3'

When the user cancels the dialog or anything Boes wrong, we .eturn - 1 and with this the

application closes. Otherwise, we created a new render window and a new scene manager

in step 4. Using the Scene mana8er, we created a camera, and with the camera we created

the viewport; then, using the viewport, we calculated the aspect ratio for the camera The

creation of camera and viewport shouldn't be anything new; we have already done that in

Chapter 3, Conero, Light, ond Shodow. After creating all requirements, we told the root
instance to start rendering, so our result would be visible. Following is a diagram showing

which object was needed to create the other:

Adding resourGGs
We have now created our first Ogre 3D application, which doesn't need the

ExampleApplication. But one important thing is missinS: we haven't loaded

and rendered a model yet.

We have our application, now let's add a model.

1. After setting the aspect ratio and be{ore starting the rendering add the zip archive

containing the Sinbad model to our resources:

Ogre: :ResourceGroupManager: :geEsingleton() .

addResourcelocaEion { " . . / - - /Media/packs/Sinbad. zip', " zip") ;

2. We don't want to index more resources at the moment, so index all added

resources now:

Ogre: : ResourcecroupManage!: :getsingleton () .

initialiseALlResourceGroups () ;

wfialiastfiappened?
W€ created our first Ogre 3D application without the help of the ExampleAppl icaE ion'
Eecause we aren't using the ExampleApplication any longer, we had to include

ogre3 D . h, which was previously included by exampl eAppl ication - h' Before we can do

anything with Ogre:{D, we need a rooE instance The root class is a class that manages

the higher Ievels of C,gre 3D, creates and saves the factories used for creating other objects'

loads and unloads the needed plugins, and a lot more We Save the root instance one

parameter:thenam(:ofthefitethatdefineswhichpluginstoloadThefollowingisthe
complete signature c,f the constructor:

Root(const sEring & pluginFileName = 'plugins cfg",const Srring &

configFileName = "ogre'cfg",const String & IogEileName = 'Ogre 1og")

Besides the name for the plugin configuration file, the function also needs the name of the

Ogre configuration and the log file. We needed to change the first file name because we are

usingthedebugversionofourapplicationandthereforewanttoloadthedebugplugins The

default value is ptug ins - cfg, which is true for the release folder of the ogre 3D sDK, but

our application is rur ning in the debug folder where the filename is plug ins-d ' c!g'

ogre. cfg contains fhe settings for starting the Ogre application that we selected in the

config diaiog. rhis sa'/es the user from making the same changes every time he/she starts

our alplication. with this file ogre 3D can remember his choices and use them as defaults

for the next start. This file is created if it didn't exist, so we don't append an
-d

to the

filename and can use the defaulu the same is true for the log file'

Chopter9

3. Now create an instance of the Sinbad mesh and add it to the scene:

Ogre: :Entity* ent = sceneManager->createEntity("Slnbad mesh") ;

sceneManager_ >geERootsceneNode () - >attachob jecE (ent),

4. Compile and run the application; you should see Sinbad in the middle ofthe screen:

Whatiasthappened?
We used the ResourceGroupManager to index the zip archive containing the Sinbad

mesh and texture files, and after this was done, we told it to load the data with the

creaEeEnriCy () Call in step 3.

Using resources.cfg
Adding a new line of code for each z ip archive or folder we want to load is a tedious task

and we should try to avoid it. The Exampl eAppl icat ion used a configuration file called

resources. cfg in which each folder or zip archive was listed, and all the content was

loaded using this file. Let's replicate this behavio(

UsinB our previous application, we are now going to paTse the resources - cfg.

7. Replacetheloadingof the ziparchivewithaninstanceof aconfiSfilepointingat
the resources-d. cfg:
Ogre::ConfigFile cf;
.i. io"a r{it .Jor.ces-d cfgl{) ;

2.

3.

4.

5.

3D Stortup Sequence

First get the iteratot which goes over each section of the confi8 file:

Ogre: :Conf iqFile: :sectionlEeraEor sectionlEer =
cf . getsectionlEeraEor () ;

Define three strings to save the data we are going to extract from the config file

and iterate over each section:

Ogre: :String secEj.ooName. c!'peName, dataname;
uhile (sectionlter.hasMoreElemenf,s O)

{

Get the name of the section:

sectionName = sectionlter.peekNextKeyO ;

Get the settings contained in the section and, at the same time, advance the section

iterator; also create an iterator for the settings itself:

Ogre: :ContigFile: :SeEEingsMultiMap aseEtings = sectionlter.
geENext () ,
ogre: :ConfigFile: :SettingsMulEiMap: :rterator i;

Iterate over each setting in the section:

for (i = settings->beginO; i != settings->endO; ++i)

{

Use the iterator to get the name and the type of the resources:

El4)eName = i->firsL;
dataname = i->second;

Use the resource name, type, and section name to add it to the resource index:

Oqre: :ResourcecroupManaqer: :geESingleton () .

addResourceLocation (daEaname. typeName, sectionName) ;

Compile and run the application, and you should see the same scene as before.

6-

7.

8.

9.

/ai\
i. Jl

Chapter 9 3D Stodup

Using the previously applied code we are now going to create a class to separate the Ogre

code from the main function.

,. Create the class MyApplication, which has two private pointers, one to a Ogre 3D

sceneManager and the other to the RooE class:

class MyApPIicatsion
{

Ogre: :SceneManager*
-6ceneManager;Ogre::Rootsr _rooti

2. The rest ofthis class should be public:

publ ic:

3. CreatealoadResourcesO function,whichloadstheresources cfg
configuration file:

void loadResources o
(

Ogre::CoifigFile cf;
cf. load (.resources a. ctg{) ;

4. lterate overthe sections ofthe configuratjon file:

ogre: :conf igFile: :sectiotrrteraEor sectionrEer =

cf.getsectionrterator () ;
Ogre: :String secLionName, typeName. dataname;
while {secEionrter.hasMoreElemenEs O)

i

5. Get the section name and the iterator for the settings:

sectionName = sectionlEer.peekNexEKeyO,
Ogre: :ConfigFile: :SettingsMulEiMap rsettings = sectionlEer.
getNexE () ;
ogre : : conf igFile : : seEtingsMultiMap : : iterator i ;

5. lterate over the settings and add each resource:

for (i = settings->beginO; i I= seEtings->encOi ++i)
(

trceName = i->first;
dataname = i->second;
Ogte : : ResourcecroupManage r : : gets i n91 eEon () .

addResourceLocacioo (

dataname, t!?eName, seccionName) ;

wnat ia$ nappened?
lnthefirststep,weusedanotherhelperclassofOgre3D,calledconfj-gFiIe Thisclass

is used to easily load and parse simple configuration files, which consist of name-value

pairs. Bv using an instance ofthe configFile class, we loaded the resources-d'
ctg. we hardcoded the filename with the debug postfix; this isn't good practice and

in a production application we would use fifdef to change the filename depending

on the debug or release mode. ExampreApplication does this; let's take a look at

LxampleAppl icdtion. h line 384:

Hif OGRE-DEBUG_MODE

cf -1oad(mResourcePath + "resources-d cfg") ;

*eIse
cf . load (mllesourcePath

#endi f

,,resources.cfg");

SIruGtutc oI a eonfiguration file
The configuration file loaded by the helper class follows a simple structure; here is an

example from resource. cfg. of course your resource . cf9 will consist of different paths:

lceneral l

Fi leSystem=D : /'Programing/ogrelogle-Erunk-1-? /Samples/Media

IGenerall starts a section, which goes on until another Isectionname] occurs in the file'

Each configuration file can contain a lot of sectionsi in step 2 we created an iterator to iterate

over all the sections in the file and in step 3 we used a while loop, which runs until we have

processed each section.

A sechon consists of:everal settings and each setting assigns a key a value' We assign the

key EilesysEem the value D : /progranming/ogre/ogre-Lrunk-l-7/samples/
Media.lnstep4wecreatedaniteratorsowecaniterateovereachSetting.Ihesettingsare
internally called name-value pairs. we iterate over this map and for each entry we use the

mapkeyasthetypecftheresourceandthedataweuseasthepath Usingthesedionname

3s resource 8roup, w€'added the resource using the resource group manager in step 8' once

we had parsed the co rplete file, we indexed all the files'

Cteating an aP[liGation class
We now have the basis for our own Ogre 3D appllcation, but all the code is in the main

function, which isn't really desirable for reusing the code'

Chdpter9

Og re : : Re s ourceGroupManager :
,:

geES ingle Eon O .

iniLial iseAllResourcecrouPs () ;

)

7. Also create a startup () function, which creates an Ogre 3D root class instance

using the plugins. cfg:
int startupo
(

_root = new Ogre: :Root(<pluginsd.cfg,) ;

8. Show the config dialog and when the user quits it, return -1 to close

the application:

if (!_roo!->showconfigDialogO)

{

I

9. Create the Renderwindow and the sceneManager:

ogre: :Renderwindow" window = -root_>j-niEialise
(true, nogre3D

Begimers Guide"),'

-sceneManager
= rooa - >createsceneManager (Ogre : : ST-CENERIC) ;

10, create a camera and a vieuport:
ogre : : camera* camera = -sceneManager_>createcamera

(r'camera") ;

camera- >setposiLion (Ogre : : Vector3 (0, 0, 50)) ;

camera_>lookAt (Ogre: :vector3 (0,0,0)) i
camera- >setNearclipDistance { 5) ;

ogre: :viesportr viewport = window_>addviewport (camera) i
viewport->sec8ackgloundcolour (Ogre: :Colourvalue (0 - 0,0.0,0.0)) ;

camera- >setAspect.Ratio {Ogre : : Real (viewport ->getActualwidth (}) /
ogre: :Rea1 (viewport->getAcEualHeighe o)) ;

II. call the function to load our resources and then a function to create a scene; after

that, Ogre 3D starts rendering:

loadResources () ,
createscene () ,

-root - >s EartRendering () ,

return 0;

3D Sfirtup

,2, Then create the createscene () function, which contains the code for creating the
SceneNode and the EnLity:
void createscene ()

{

ogre : : Enticy* ent = _sceneManager- >createEntity (<sinbad. mesh") ;

_sceneManager- >getRooLsceneNode () - >attachobject (etrt) ;

)

13. weneedtheconstructortosetboththepointerstoNULLsowecandeleteitevenif
it hasn't been assigned a value:

MyApplicaLiotr ()

(

_SceaeManager = mL;
_root = NULL,

)

,4. We need to delete the root instance when our application instance is destroyed, so

implement a destructor which does this:

-MyAppl icat ion ()

{
delete _root;

)

15. The onlything left to do is to adjustthe main function:

int mein (void)
i

MyApplication app,
app. sEartup O ;

leturn 0;

l

15, Compile and run the application; the scene should be unchanged.

wnatiuilhappaned?
we refactored our starting codebase so that different functionalities are better organized.

We also added a destructor so our created instances would be deleted when our application
isclosed.Oneproblemisthatourdestructorwon'tbecalled;becausestartupO never
returns, there is no way to close our appliGtion. we need to add a FrameListener to tell
OBre 3D to stop rendering.

t2131

Chopter 9

ldding a []amolistenel
We have already used the ExampleFramelistener; this time we are Soing to use our own

implementation of the interface.

Let the destructor delete the instance:

deleEe -fisEener;

At last, create a new instance ofthe Framelistener and add it to the root object;

this should happen in the slartup () function:

_listener = new MyFramelistenerO;
_rooL- >addFrameLisEene! (_listener) ;

9. Compile and run the application; it should be closed directly.

Wnatiasthaorcned?
We created our own Framelistener class, which didn't rely on the

ExampleFramelistener implementation. This time we inherited directly from the

FrameLisLener interface. This interface consists ofthree virtual functions, which we

implemented. We already knew the franestarted function, but the other two are new

All three functions return false, which is an indicatorto Ogre 3D to stop rendering and

close the application. Using our implementation, we added a FrameLis Lener to the root
instance and started the application; not surprisingly, it closed directly.

lnucstigatin g tne []amelistenet functi0nality
our FrameListener implementation has three functions; each is called at a different point

in time. we are going to investigate in which sequence they are called.

Using the console printing we are going to inspect when the Framelistener is called'

l. First let each function print a message to the console when it is ralled:

bool framestarted (const Ogre: : FrameEvent& evt)
(

std::couE << <Flane started> << std::endli

7.

8-

$u
Using the code from before we are going to add our own F!amel,istener implementation

1. Create a new class called MyFramelistener exposing three publiclyvisible

event handler functions:

class MyFr3melislener : public Ogre: :Framelistener
{

publ ic :

2. First, imptement the framesLarted function, which for now returns false
to close the ;rPPIication:

bool frameStarted(consE Ogre: :FrameEvent& evt)
{

return false;
)

3. We also need a frameEnded function, which also returns false:
bool frameEnded(consL ogre: :FrameEvent& evt)
{

reEurn false;
)

4. The Iast funclion we implement is the frameRenderingoueued function,

which also returns false:
bool frameRenderingoueued(const Ogre: :FrameEvent& evt)

t
reEurn false;

)

The main class needs a point to store the Prameliseener:

MyFrameList.ener* _listener,

Remember tl" at the constructor needs to set the initial value of the listener to NULL:

lisEener., NULL;

5.

6.

return false;
l
bool frameEnded(const
i

sEd::cout << <Flame
leturn' false ;

I

Ogre: : FrameEvent& evE)

ended" << std::endl;

bool frameRenderingoueued(const Ogre: :FrameEvent& ovE)

t?t6l

Chopte.9

(

std::coui << (Prame queued) << sEd::endl;
reLurn fa15e;

)

2, Compile and run the application; in the console you should find the first string-
Frame started.

Whatiusthapoeneil?
We added a "debug" output to each of the Frameli stener functions to see which function

is Betting called. Running the applicatjon, we noticed that only the first debug message is

printed. The reason is that the framestarted function returns false, which is a signal for

the rooc instance to close the application.

Now that we know what happens when f ramestarted () returns f a1se, let's see what

happens when frameStarted () returns true.

Now we are going to modify the behavior of our FramelisEener to see how this changed

its behavior,

1. Change framescarted to return true:
bool framestarEed(consf Ogre: :Framefrent& evt)
t

std::cout << (Frame started> << std::endli
returtr Lrue;

)

2. Compile and run the application. Before the applicafion closes directly, you will see

a short glimpse of the rendered scene and there should be the two following lines in

the output:

Frame started

Frame queued

Wfiat iu$ nappened?
NoW the framestarted function returns Lrue and this lets Ogre 3D continue to render
until false is returned by the frameRenderingoueued function. We see a scene this time
because directly after the frameRenderingQueued function is called, the render buffers
are swapped before the application gets the possibility to close itself.

Ma nloop

rL
frameStarted

TI
<} rendeirng lhe scene

frameRendenngQueued swappingthebuffers

n
| 1 e.t"
12r -)

oouHe [uffeilng
when a scene is rendered, it isn't normally rendered directly to the buffer, which is
displayed on the monitor Normally, the scene is rendered to a second buffer and when
the rendering is finished, the buffers are swapped. This is done to prevent some artifacts,

which can be created if we render to the same buffeL which is displayed on the monitor. The

Framelistener function, frameRenderingoueued, is called after the scene has been

rendered to the back buffer, the buffer which isn't displayed at the moment. Before the buffers

are swapped, the rendering result is already created but not yet displayed. Directly after the
frameRenderingoueued function is called, the buffers get swapped and then the application
gets the return value and closes itself. That's the reason why we see an image this time.

Now we will see what happens when frameRende!ingQueued also returns Erue.

Once again we modify the code to test the behavior ofthe Frame Listener

1. Change frameRenderingoueued to return true:
bool frameRenderingoueued (const Ogre: :FrameEveot& evt)
{

sEd::cout << (Frame c{ueued. << std::endl;
reiurn true;

)

l2t8l

Chapter 9

2. compile and run the application. You should see Sinbad for a short period of time

before the application closes, and the following three lines should be in the console

output:

Frame started

Frame queued

Fcme ended

Wnatia$naquened?
Now that the frameRenderingQueued handler returns true, it will let Ogre 3D continue

to render until the frameEnded handler returns false'

2. Compile and run the application. You should see the scene with sinbad and an

endless repetition of the following three lines:

Frame started

Freme queued

Frame ended

Whatiasthappeneil?
Now all event handlers returned true and, therefore, the application will never be closed;

it would run forever as long as we aren't going to close the application ourselves.

Mainloop

.r.t
frameSbned

J_L rendenng the scene

frameRendeinlQueued

ll swaooinEte ourea
JL\,/ ext

f€meEnded

-[l
,enaenng tne scene

frameRenderingQueued

[-l .*ur,n*n" o,nuov*5*

s)

Like in the last exampte, the render buffers were swapped, so we saw the scene for a short

period of time. After the fGme was rendered, the frameEnded function returned fa1 se'

which closes the applica6on and, in this case, doesn't change anything from our perspective

Now let's test the lasl of three possibilities.

I. Change frameRenderingQueued to return Erue:

bool frameilded (consE Ogle::Frahefrent& evE)

{
std::cou: << <Ftame ended" << std::endI,
retum Lrue;

)

lxsl

Adding inlut
We have an application running forever and have to force it to close; that's not neal

Let's add input and the possibility to close the application by pressing Eicope.

Now that we know how the ErameListener works, let's add some input-

I. we need to include the ors header file to use ors:

finclude 'OIS\ols.h"

2. Remove all functions from the Frameli6tener and add two private members to
store the InputManager and the Keyboard:

OIS : : InputManager* _InPutManager;

t?201

Chopter9

O1S : : Keyboard* _Keyboard,

3. The Framelistener needs a pointe. to the Renderwindow to initialize ors,
so we need a constructor, which takel the window as a parameteri

MyFrameListener(Ogre: :Renderwindow* win)
(

4, ors will be initialized using a list of parameters, we also need a window handle

in string form for the parameter list; create the three needed variables to store

the data:

OIS : : ParamlisE parameters ;
unsiqned int windowHandle = 0;
std : : osEringstream windowHandlestring;

5. Get the handle of the Renderwindow and convert it into a string:

uin->getcustodttribute ('wrNDow", &windowHandlel ;

windowHandlesEring << windowHandle;

5, Add the string containin8 the window handle to the parameter list using the key
trWINDOWN.

parameEers. inselt {sEd: :make-pair ('WINDOW', windowgaDdlesEring.
sEro)),

7. Use the parameter list to create the InputManager:

_lnputManager = OIS : : InpuLManager: :crealelnputsystem(parameters) ;

8. with the manager create the keyboard:

_Keyboard = staEic_cast<Ols: :Keyboardr> (-InputMaoaqer_
>createlnputsobjecf, (oIS: :OlsKeyboard, false)) ;

9. What we created in the constructor, we need to destroy in the destructor:

-MyPraneLisf,ener ()

{

lnputManager- >destroylnpulob j ect (-Keyboard) ;

oIS : : InpuEManager: : desLroylnputsysLem (-InputManager) ;

)

10. Create a new f ramestarted function, which captures the current state of the

keyboard, and ifEscope is pressed, it returns faise; otherwise, it returns true:

bool framestarted(consE Oqre: :FrameEvent& evt)
(

_Keyboard- >capLure (),
if (Keyboard- >isKeyDown (OIS : ; KC-ESCAPE))

(
return false;

)
recurn true;

)

,r. ThelastthingtodoistochangetheinstantiationoftheFramelistenertousea
pointer to the render window in the starLup function:

_lisLener = new MyElameliscener(window),
root -,addFrameListener (_listene!) ;

12. Compile and run the application. You should see the scene and now be able to close

it by pressing the Fscdpe key- ,/

wrat iasl happened?
We added input processing capabilities to our Framel,istener the same way we did in

chopter 4, Getting user lnput ond using the Frume Listener. The only difference is that this

time. we didn't use any example classes, but our own versions.

which three functions offerthe Framelistener interface and at which point is each of
these functions called?

llur own mair loo[
We have used the startRendering function to fire up our application. After this, the only

way we knew when a frame was rendered was by relying on the Framelistener. But

sometimes it is not possible or desirable to give up the control over the main loop; for such

cases, Ogre 3D provides another method, which doesn't require us to Sive up the control

over the main loop.

Using the code from before we are now going to use our own rendering loop.

,. Our application needs to know if it should keep runnin8 or not; add a Boolean
as a private member of the application to remember the state:

bool _keepRunning;

2. Remove the startRendering function call in the startup function.

l22tl lz72l

3.

4,

5.

6.

chopter 9

Add a new function called renderoneFrame, which calls the renderoneF!ame

function of the root instance and saves the return value in the
-keepRunning

member variable. Before this call, add a function to process all window events:

void renderoneFrame o
{

ogre: :windowEventutiliLies: :messagePump O ;

-keepRu4ning
= -!ooE_>fenderoneFrameO,

l

Add a getter for the
-keepRunning

member variable:

bool keepRunning o
{

reLurn --keePRunning;
)

Add a whi 1(: loop to the main function, which keeps running as long as the

keepRunniag function returns Erue. ln the body ofthe loop, call the

renderone Frame function of the application.

while (app. keepRunning ())

{
app. rencleroneFrame O ;

)

Compile ano run the application. There shouldn't be anY noticeable difference to

the last example.

1223 I

After this we call the Ogre 3D function renderoneFrame, which does exactly what the name

suggests: it renders the frame and also calls the framestarted, frameRenderingoueued,

and frameEnded event handler of each registered FrameLisEener and returns

fa1 se if any of these functions returned fal se. Since we assign the return value of the

function to the
-keepRunning

member variable, we can use this variable to check if the

application should keep runninB. when renderoneFrame returns a false, we know some

FrameListener wants to close the application and we set the4keepRunning variable to

fa1se. The fourth step just added a getter for the
-keepRunring

member variable'

ln step 5, we used the
-keepRunning

variable as the condition for the whi le loop This

means the while loop will run as long as
-keepRunning

is true, which will be the case

until one Framelistener returns fa1se, which then will result in the whire loop to

exit and with this the whole application witl be closed. lnside the whil'e loop we call the

renderoneFrame function of the application to update the render window with the

newest render result. This is all we needed to create our own main loop.

lilding a Game]a tauainl
We have a lready im plemented a came? in Chopter 4, Getting lJser lnput ond U sing the

Frome Listener, but, nevertheless, we want a controllable camera in our own implementation

of the frame listener, so here we go.

Using our Framelistener we are going to add a user controlled camera.

,. To control the camera we need a mouse interface, a pointer to the camera, and a

variable defining the speed at which our camera should move as a member variable

of our FraneL i sEener:

OIS::Mouset _Mouse;
Ogle::Camerar _Cam;
floab _movementsPeed;

2, Adjust the constructor and add the camera pointer as the new parameter and set

the movement speed to 5o:

Myrramelistener(ogre: :Renderwindow* win,ogre: :cam€ra* cam)

(

_Cam = cam;

_movementsPeed = 50.0f ;

Itlhatiastha0r/ened?
We moved the control of the main loop from Ogre 3D to our application' Before this change'

ogre 3D used an internal main loop over which we hadn't any control and had to rely on the

Framelistener to 8et notified if a frame was rendered'

Now we have our own main loop. To 8et there, we needed a Boolean member variable,

which signals ifthe applicabon wishes to keep running or not; this variable was added in step

t. Step iremoved the starLRendering function call so we wouldn't hand over the control

to Ogre 3D. ln step 3. we created a function, which first calls a helper function of Ogre 3D,

whichprocessesallu/indoweventswemighthavegottenfromtheoperatingsystem ltthen

sends all messages we mi8ht have created since the last frame, and therefore makes the

application "well-bet aved" in the context of the host windowing system

Chopter I

3.

4.

5.

Init the mouse using the lnputManager:

_Mouse = sEatlc casL<OIS: :Mouse*>(_InpuEManager-
>creaLelnputobject (OIS: :OISMouse. false)) ;

And remember to destroy it in the destructor:

_ InputManage! - >de st roylnpuEObj ec t (,Mouse) ;

Add the code to move the camera using the w, A, 5, D keys and the movement

speed to the framesEarEed event handler:

Ogle: :vector3 translate(0, 0, 0) ;

if (Keyboard- 'isKeyDown
(ols : : KC-W))

{

EranslaEe += Ogre: :VecEorS (0.0, -l);

)

if (_Keyboard- >isKeyDown {ols : : KC-S))

{

translate += Ogre: :Vector3 (0,0,1) ;

)

i f (_Keyboard- >isKeyDown (oIS : : KC-A))

{

Lransl-ate += ogre: :vectorl (_1, 0. 0),
)

if (_Keyboard->isKeyDown (oIS: : KC-D))

{
Eranslate += Ogre: :VecEorl {1, 0, 0) ;

)

_Cam->moveRelaLive (EranElaEe*evE.EimesincelastFrame *
-

movementspeed);

Now do the same for the mouse control:

_Mouse->capEure();
fl"oat roLX = _Mou6e->getMousesEaEeO.X,rel.

* evt.
timesinceLasLFrame+ - 1 ;

floaL rotY = -Mouse_>geLMousesLate{).Y.re1
* evt.

timeSincelasEFrame r -1;

_Cam->yaw (ogre : : Radian {rotx)) ;

_Cam->pitch (Ogre : : Radian (rotY)) ;

The last thing to do is to change the instantiation of the FrameListener:

_tistener = new MyFramelistener(windou,camera) ;

8. Compile and run the application. The scene should be unchanged but now we can

control the camera:

What iu$ naonened?
We used our knowledge from the previous chapters to add a user-controlled camera.

The next step will be to add compositors and other features to make our applicafion
more interesting and to leverage some of the techniques we learned along the way.

Adding comDositors
Previously, we have created three compositors, which we are now Boing to add to our
application with the capability to turn each one off and on using keyboard input.

Having almost finished our application, we are going to add compositors to make the
application more interestjng-

1. We are going to use compositors in our Eramelistener, so we need a member
variable containing the viewport:

ogre : :viewport*,vieh'port;

2. We also are going to need to save which compositor is turned on; add three
Booleans for this task:

bool _compl, _comp2,,comp3;

6.

7.

lz75l

i.

4.

9!9Prery

we are going to use keyboard input to switch the compositors on and off To be able

to differentiate between key presses, we need to know the p.evious state of the key:

bool . downl, _oom2, -down3;

Change the constructor ofthe Fr4meLislener to take the viewport as a

parameter:

MyFramel j.sEenet {Ogle : : Renderwindow* wi-n, Ogre : : Came!ai
cam, Ogre: :viewpoati viewPort)

Assign the viewport pointer to the member and assign the Boolean value their

starting value:

-viewports = viee'PorE,

_compl = false;
_comp2 = false;
_comp3 = ft1se,

_down1 = felse,
_down2 = fl1se;
_doun3 = ftlset

lf the key nurnber -1 is pressed and it wasn't pressed before, change the state of the

key to pressed, flip the state ofthe compositor, and use the flipped value to enable

or disable the compositor. This code goes into the framestarted function:

if (-Keyboarrd- >isKeyDown (OIS : : KC-1) && !
-down1

)

{

_downI = Erue;

_comp1 = lcompli
Ogre: :CornposiEorManager: :geESiilgIeEonO -selcomposiEorEnabled{-

vierporE,'composicor2", -comPl)
;

)

Do the same for the other two compositors we are going to have:

if (-Keyboard->isKeyDown (OIS : : KC-2) && !
-down2)

{

_down2 = true;
_comp2 = !comp2;
Ogre : : Coru)os iEorManager: : gets ingleton () - setCompos itorEnabled (-

viewpolt,' ComPositor3i,
-comp2)

;

)
if (_Keyboa.d->isKeyDom(OIS: :KC-l) && !

-dom3)
{

_down3 = true;
_comp3 = :comP3;

Ogre ; : Compos i corManager: : getS ingl eton () . set Compos itorEnab led (

-viewport, "CompositorT", *comP3) ;

)

8. lf a kev is no longer pressed, we need to change the state of the key:

if (! Keyboard->isKeyDown(OIS: : KC-1))

t
_down1 = false;

)

if (!-Keyboard-'isKeyDown (OIS : : KC-2))

(

_douo2 = false;
)
if (!-Keyboard- >isKeyDown (OIS: : KC-3))

(

_dom3 = f alse;

i

9. ln the rtarrup O function, add the three compositors to the viewportto the end

ofthe function:

Ogre: :CompositorManager: :geLSingleton O .addCompositor{viewport,
'rcompositor2 " l ;

ogre: :composiEorManager: :geEsingleton()'addcompositor(viewport'
"Composito!3r');
Ogre : : Compos i torManager : : gets ingleton () . addcomPos i to! (vi ewport ,

"Composito!?");

I0. RemembertochangetheinstantiationoftherrameLisrenertoaddtheviewport
pointer as Parameter:

-listener = new MyEramel.istener(windot,camera,vieuport) ;

.1I. compileandruntheapplication.Usingthel,2,3keys,youshouldbeabletoturn
different compositors on and off. The -1 key is for making the image black and white,

the 2 key inverts the image, and the 3 key makes the image look like it has a smaller

resolution; you can combine all of the effect the way you ,ike:

lnsl

5.

6.

7.

12nl

3.

4.

Chopter 9

We are going to use keyboard input to switch the compositors on and off To be able

to differentiate between key presses, we need to know the previous state of the key:

bool _downl, _down2, -dounl;

Change the constructor ofthe Fr4melistener to take the viewport as a

parameter:

MyFramelisEef,er (ogre: : Rende!windowr win, ogre: : camera*
cam, Ogre: :vieL'PotL* wiewport)

Assign the viewport pointer to the member and assign the Boolean value their

starting value:

-viewporE = viewPorEi

_compl = false;
_compz = false;
_comp3: ftlse,

_down1 = false;
_down2 = fl1sei
_down3 = ftlsei

lf the key nurnber -1 is pressed and it wasn't pressed before, change the state of the

key to pressed, flip the state ofthe compositor, and use the flipped value to enable

or disable the compositor. This code goes into the framestarted function:

if (-Keyboar.d->isKeyDown(OIS: :KC-1) && !
-down1)

{

_dowoI = true;
_comp1 = ,comPli
Ogre: : Cornpos iEorManager: : geES ingleEon O . setcompos i EorEaabled (-

vieuport,'ComPosiEor2tr, -comP1),
)

Do the same for the other two compositors we are going to have:

if (-Keyboard->isKeyDown (OIS : : Kc-2) && !
-down2

)

{

_dowo2 = true;
comP2 = !comp2;

Ogle : : Cor\)os itorManager: : getSingleton () - serCompos itorEnabled (-
vi.ewpolt,' ComPosi!or3",

-comp2)
;

)
if (_Keyboar:d- >isKeyDom (oIs : : KC-3) && I

-dom3
)

{

_dowtr3 = true;
_comP3 = lcofrP3;

ogre : : compos i torManager : : gets ingl eton () _ seEcompos i'!orBnabled (-
viewporE, "ComPosltotT", -comp3)

;

i

8. lf a key is no longer pressed, we need to change the state of the key:

i f (! _Keyboard- >i sKeyDown {oIS: : KC-1))

i
_downt = false;

I
if (! _Keyboard- >isKeyDown (OIs : : KC-2))

t
_do0n2 = false;

)
if (!_Keyboard- >isKeyDowE (OIS: : KC-3))

{

_dom3 = f alse;
)

9. tn the startup O function, add the three compositors to the viewportto the end

ofthe function:

Ogre r : Codposr EorManager: , glingfeton () . addCompos I tot (viewporE,

"CofrPositor2rr) ;

Ogre: :ComposicorManager: :getsinglelon() .addcomposito,(viewport,
"Composi.torl ") ;

ogre r : compos i Eo rManage r : : gets ingleton o . addcomPos i tor (vi ewport ,

'CompositorT");

10. RemembertochangetheinstantiationoftheFramelistenertoaddtheviewport
pointer as parameter:

_lisEene! = new MyFramelisEener(window,camera,vierport) ;

II. Compileandruntheapplication.Usingthet,2,3keys,youshouldbeabletoturn
different compositors on and off. The .1 key is for making the im3ge black and white,

the 2 key inverts the image, and the 3 key makes the image look like it has a smaller

resolution; you can combine all of the effect the way you like:

12281

5.

5.

7.

12nl

Chopter 9

whatiusthapuened?
We added the compositors we wrote io the chapter about and made it possible to turn

them on and off using the I, 2, and 3 keys. To combine the compositors, we used the fact

that Ogre 3D automatically chains compositors if more than one is enabled-

ldding a [lane
Without a reference to where the ground is, navigation in 3D space is difficult, so once again

Iet's add a floor plane.

Everything we are going to add this time is going in the creaEescene () function:

I. As we already know we need a plane definition, so add one:

Ogre: :P1ane plane(Ogre: :vector3: :NIT_Y, -5) ;
ogre : : MeshManager : : geESingleton () . createplane ("pIane',

ogre : : ResourcecroupManager: :DEFAL:LT_RESOURCE_GRoUP_NME, plane,
1500, 1500, 200, 200, Erue, 1, 5, 5, Ogre : :Vectorl : :UNIT Z) ;

2. Then create an instance of this plane, add it to the scene, and change the material:

Ogre: :Entity* ground= _sceneManager->createEntity("LightplaneEnti
ty", "Plane") ;

_sceneMailager - >ge LRoot sceneNode () - >createCh i ldsceoeNode () _

>dLtachobJ ect (ground) ;

ground- >seEMaLe!ialName (" Exampf es/BeachsEones") ;

3. Also we would like to have some light in the scene; add one directional light:

Ogre: :Light* lighE = _sceneManager->createlight("LighE1") ;

lighE - > setType {Ogre : : lighE : : LT_DIRECTIONM) ;

LighE - >seLDirecCion {Ogre : : vectorf (1, - I. O)) ;

4, And some shadows would be nice:

_sceneManager->setShadofrechnique (Ogre : :SBDOWTYPE STENCIL
SDITIVE), I

5. Compile and run the application. You should see a plane with a stone texture and

on top the Sinbad instance throwing a shadow on the plane.

I22Sl

Chopter 9

wnatiu$napfiwed?
Again, we used our pt eviously gained knowledge to create a plane, light, and add shadows

to the scene.

Adding usel t;ontlol
we have our model instance on a plane, but we can't move it yet; let's change this now'

Now we are going to add interactivity to the scene by adding the user control to the

movements of the model.

.l The FrameI,j.stener needs two new members: one pointerto the node we

want to move, and one float indicating the movement speed:

float
-walkingSPeed;

Ogre : : SceneNode*
-node;

2. The pointer tl the node is passed to us in the constructor:

MyFrameLisl:ener (Ogre: :Renderaindow* win,Ogre: :Camera*

cam,Ogrer :l/iesport* viewport,Ogre: :SceneNode* node)

3.

4.

Assign the node pointer to the member variable and set the walking speed to 50:

_walkingspeed = 50,0f;
_node = node;

ln the framestarted function we need two new variables' which will hold the

rotation and the translation the user wants to apply to the node:

oqre: :vectsor3 SinbadTranslate(0,0, 0) ;

floaE _roEaLion = 0-0f;

Then we need code to catculate the trans,ation and rotation depending on which

arrow key the user has pressed:

if (_Keyboard- >isKeyDo@ (oIS: : (C-UP))

{
SinbadTranslate += Ogle::vectorl (0,0. -1) ;

_rotation = l-14f;
)
if (_Keyboard- >isKeyDown (OIS : : KC-DON))

{
SinbadTranslate += Ogre::vector3 (0,0,1) ;

_rotation = 0. of;
)
if (_Keyboard- >isKeyDown (Of S : : KC-LEET))

{
SinbadTranslaLe += Ogre: :VecLor3 (-1, 0.0) ;

_roEatio4 = -I.57f;
)l
i f (Keyboard- >isKeyDown (oIS! : KC-RIGHT) I

t
SinbadTranslaEe += Ogre: :vectorS (1, O,0) ;

^rotaEion = !.57fi

)

Then we need to apply the translation and rotation to the node:

_node->EranslaEe (SinbadTranslate * evt. timesincelastFrame *

walkingspeed);
_node- >reseEoiientaEion () ;

_node->yaw(ogre: :Radian(_rotation)) ;

The application itself also needs to store the node pointer of the en6ty we want to

control:

ogre: :sceneNode. SinbadNode;

lr32l

5.

us
,$fta$$"kL

6.

7.

Chopter9

8. The FrameListener instantiation needs this pointer:

llscener = new MyFramelistener(window,camera,viewport,_
S inbadNode)

9. And the .reatescene function needs to use this pointer to create and store the

node of the entity we want to move; modify the code in the function accordingly:

_sinbadNode = _sceneManager->getRoolsceneNode () -
>creaEechildsceneNode () ;

_sinbadNode- >aLtachobj ecE (sinbadEnt) ;

10. Compileandruntheapplication.Youshouldbeabletomovetheentitywiththe
arrow keys:

Wnaliusthappened?
We added entity movement using the arrow keys in the Framelistene!. Now our entity

floats over the plane like a wizard.

Adding animation
Floating isn't exactly what we wanted; let's add some animation.

,u.Qt*

!Le-

Our model can move but it isn't animated yet, let's chan8e this.

I. The Framelisrener needs two animation states:

Ogre: :himationSEate. an.iStdte;
ogre: :Mimationstate*

-aniStateTop;

2. To get the animation states in the constructor, we need a pointer to the entity:

MyFrameListener (Ogre: :Renderwindow* win,Ogre: ;Camera*
cam, Ogre : : Vieuportsr vj.ewport, Ogre : : SceneNode* node, Ogre : : EnEity*
ent)

3. With this pointer we can retrieve the lhimaLi.onsrare and save them for later
u5e:

_anistate = eoc->getMimationstate ("RunBase") ;

_anislate- >setloop (f alse) ;

,anisEaEeTop = enE->getAnimationsEaEe {<RunTop>} ;

_aniStaceTop- >seELoop (f alse) ;

4. Now that we have the Animationsrare, we need to have a flag in the
framestarted funcUon, which tells us whether or not the entity walked this
frame. We add this flag into the i f colditions that query the keyboard state:

bool walked - false; I

if (_Keyboard- >isKeyDown (OIS : : KC_UP))

{
SinbadTranslate += ogre: :Vector3 (0,0.-1) ;

_rotation = 3.a4fi
walked = Erue;

)
i f (_Keyboard-, isKeyDown (ors : : KC_DOW))

{
SinbadTranslaEe += Ogre::VecEor3 (0,0,1) ;

_roEation = 0.0f;
walked = tlue;

)
if (_Keyboard- > isKeyDown (OIS : : KC_LEFT))

{
SinbadTranslaEe += Ogre: :Vector3 (-1,0.0) ;

_rolation = -a.57ft
walked = Erue;

)
if (Keyboard->isKeyDown(OIS::KC RIGHT))

12331 I2MI

chapter 9

i
Sj.nbadTranslaEe +: Ogre: :vectorS (1, 0.0) ;

_roEation = 1.57f,
walked = true;

5. lfthe model moves, we enable the animation; ifthe animation has ended,

we loop it:

if (walked)

{

_aniState- >setEnabled (true) ;

_aniStateTop- >seEEnab]ed (Lrue) ;

if (,anif;tate- >hasEnded ())

i
_anist.ate- >seLTi.mePosilion (0. 0f) ;

)
if (_ani!iEaf, eTop- >hasEnded ())

i
-anist

ateTop- >seLTimePosiLioo (0. 0f) ;

)

)

lfthe model didn't move, we disable the animation and set it to the start posihon:

else
{

_anistate- >setTimePosiEiotr (0. 0f) ;

_anistsate- >setEnabled (f alse) ;

_aniSEateTop- >seLTimePosiEion (0. 0f),
_aniStateTop- >setEnabled (f alse) ;

)

ln each fram:, we need to add the passed time to the animation; otherwise, it

wouldn't move:

_aniSEaEe- >addTime (evt. EimeSincelasCFrame) ;

_an is t ateTcp - >addTime (evE . r imes incelast Frame) ;

The application now also needs a pointer to the entity:

ogre : : EntiLy* _sinbadEnt ;

We use this pointer while instantiating the FrameListener:

_listener = new MyFrametistener(window, camera,viewport,--
sinbadNode, SinbadEnE) ;

1235 I

6.

10. And, of course, while creating the entity:

_SinbadEnt = _sceneManager->creaLeEntity{"Sinbad.nesh") ;

11. Compile and run the application. Now the model should be animated when

it moves:

Wnatiasthappened?
We added animation to our model, which is only enabled when the model is moved.

Look up the chapters where we discussed the techniques we used for the last examples.

Summary
We learned a lot in this chapter about creating our own application to start and run Ogre 3D.

specifically, we covered the following:

a Howthe Ogre 3D startup process works

o How to make our own main loop

. Writing our own implementation of an application and Framel,istener

la[l

7.

8.

9.

Chopter 9

Some topics we have already covered, but this time we combined them to create a more
complex application.

We have now learned everything needed to create our own Ogre 3D applications. The next

chapter will focus on extendlng Ogre 3D with other libraries or additional features to make

better and prettier applications.

