o

f s nsomsGTSA

TRoa tHZ Rooik -

, s - : 6 A @
7‘*}»;}4'?‘%‘1 D LE- %ﬁ@hnm 5 bude

by Felix Kecger , Packt Publiching 2010

The Ogre 3D Startup Sequence

(@) Time for action - starting Ogre 30

This time we are working on a blank sheet.

1. Start with an empty code file, include Ogre3d.h, and create an empty
main function:
#include “Ogre\Ogre.h"
int main (void)

{

The Ogre 3D Startup Seguence

}
2. Create an instance of the Ogre 3D Root class; this class needs the name of the
We have covered a lot of ground in the progress of this book. This chapter is "plugin.cfg":
going to cover one of the few topics left: how to create our own application Ogre::Root* root = new Ogre::Root ("plugins_d.cfg");
without relying on the ExampleApplication. After we have covered this
topic, this chapter is going to repeat some of the topics from the previous 3. If the config dialog can't be shown or the user cancels it, close the application:
chapters to make a demo of the things we have learned using our new open if (1 root->showConfigDialog())
application class. {
return -1;
}
In this chapter, we will: 4. Create arender window:

Ogre: :RenderWindow* window = root->initialise(true, "Ogre3D

¢ Learn how to start Ogre 3D ourselves .
Beginners Guide") ;

¢ Parse resources.cfg to load the models we need

« Combine things from the previous chapters to make a small demo application 5. Next create a new scene manager:

showing off the things we have learned Ogre::SceneManager* sceneManager = root-
>createSceneManager (Ogre: : ST_GENERIC) ;
So let's get on with it...

6. Create a camera and name it camera:
Startin n re 3“ Ogre::Camera* camera = sceneManager->createCamera("Camera");
g g camera->setPosition(Ogre: :Vector3(0,0,50));
camera- >lookAt (Ogre: :Vector3(0,0,0));

Up until now, the ExampleApplication class has started and initialized Ogre 3D for us;
camera->setNearClipDistance (5) ;

now we are going to do it ourselves.

7. With this camera, create a viewport and set the background color to black:

Ogre: :Viewport* viewport = window->addViewport (camera) ;
viewport->setBackgroundColour (Ogre: :Colourvalue(0.0,0.0,0.0)) ;

12061

Chapter 9

8. Now, use this viewport to set the aspect ratio of the camera:

camera->setAspectRatio(Ogre::Real (viewport- >getActualwidth())/
Ogre::Real (viewport->getActualHeight ()));

9. Finally, tell the root to start rendering:

root->startRendering() ;

Compile and run the application; you should see the normal config dialog and then
a black window. This window can't be closed by pressing Escape because we haven't
added key handling yet. You can close the application by pressing CTRL+C in the
console the application has been started from.

10.

What just happened?
We created our first Ogre 3D application without the help of the ExampleApplication.
Because we aren't using the ExampleApplication any longer, we had to include
0gre3D.h, which was previously included by ExampleApplication.h. Before we can do
anything with Ogre 2D, we need a root instance. The root class is a class that manages
the higher levels of Ogre 3D, creates and saves the factories used for creating other objects,
loads and unloads the needed plugins, and a lot more. We gave the root instance one
parameter: the name of the file that defines which plugins to load. The following is the
complete signature of the constructor:

Root (const String & pluginFileName = "plugins. cfg",const String &

configFileName = "ogre.cfg", const String & logFileName = "Ogre.log")

Besides the name for the plugin configuration file, the function also needs the name of the
Ogre configuration and the log file. We needed to change the first file name because we are
using the debug version of our application and therefore want to load the debug plugins. The
default value is plugins. cfg, which is true for the release folder of the Ogre 3D SDK, but
our application is rurning in the debug folder where the filename is plugins_d.cfg.

ogre . cfg contains the settings for starting the Ogre application that we selected in the
config dialog. This saves the user from making the same changes every time he/she starts
our application. With this file Ogre 3D can remember his choices and use them as defaults
for the next start. This file is created if it didn't exist, so we don't append an _d to the
filename and can use the default; the same is true for the log file.

12071

The Ogre 3D Startup Sequence

Using the root instance, we let Ogre 3D show the config dialog to the user in step 3.
When the user cancels the dialog or anything goes wrong, we return -1 and with this the
application closes. Otherwise, we created a new render window and a new scene manager
in step 4. Using the scene manager, we created a camera, and with the camera we created
the viewport; then, using the viewport, we calculated the aspect ratio for the camera. The
creation of camera and viewport shouldn't be anything new; we have already done that in
Chapter 3, Camera, Light, and Shadow. After creating all requirements, we told the root
instance to start rendering, so our result would be visible. Following is a diagram showing
which object was needed to create the other:

Root

Sy

SceneManager Window

2V
g

Viewport

Adding resources

We have now created our first Ogre 3D application, which doesn't need the
ExampleApplication. But one important thing is missing: we haven't loaded
and rendered a model yet.

Time for action = loading the Sinhad mesh ‘

We have our application, now let's add a model.

1. After setting the aspect ratio and before starting the rendering, add the zip archive
containing the Sinbad model to our resources:

Ogre: :ResourceGroupManager : :getSingleton() .
addResourceLocation("../../Media/packs/Sinbad.zip", "Zip") ;

2. We don't want to index more resources at the moment, so index all added
resources now:

Ogre: :ResourceGroupManager: :getSingleton() .
initialiseAllResourceGroups () ;

12081

Chapter 9

3. Now create an instance of the Sinbad mesh and add it to the scene:
Ogre::Entity* ent = sceneManager->createEntity("Sinbad.mesh");
sceneManager - >getRoot SceneNode () - >attachObject (ent) ;

4. Compile and run the application; you should see Sinbad in the middle of the screen:

What just happened?

We used the ResourceGroupManager to index the zip archive containing the Sinbad
mesh and texture files, and after this was done, we told it to load the data with the

createEntity () callin step 3.

Using resources.cfg

Adding a new line of code for each zip archive or folder we want to load is a tedious task
and we should try to avoid it. The ExampleApplication used a configuration file called
resources.cfg in which each folder or zip archive was listed, and all the content was
loaded using this file. Let's replicate this behavior.

Time for action - using resources.cfg to load our models

Using our previous application, we are now going to parse the resources.cfg.

1. Replace the loading of the zip archive with an instance of a config file pointing at
the resources_d.cfg:
Ogre::ConfigFile cf; i
cf.load(kresourcesﬂd.cfg§);

[2081

The Ogre 3D Startup Sequence

2. First get the iterator, which goes over each section of the config file:

Ogre::ConfigFile::Sectionlterator sectionlter =
cf.getSectionIterator();

3. Define three strings to save the data we are going to extract from the config file
and iterate over each section:
Ogre::String sectionName, typeName, dataname;
while (sectionIter.hasMoreElements())

{

4. Get the name of the section:

sectionName = sectionIter.peekNextKey();

5. Get the settings contained in the section and, at the same time, advance the section
iterator; also create an iterator for the settings itself:

Ogre::ConfigFile::SettingsMultiMap *settings = sectionlter.
getNext () ;
Ogre::ConfigFile: :SettingsMultiMap::iterator i;

6. lterate over each setting in the section:
for (i = settings->begin(); i != settings-s>end(); ++i
{
7. Use the iterator to get the name and the type of the resources:
typeName = i->first;
dataname = i->second;
8. Use the resource name, type, and section name to add it to the resource index:
Ogre: :ResourceGroupManager: :getSingleton() .

addResourceLocation(dataname, typeName, sectionName) ;

9. Compile and run the application, and you should see the same scene as before.

[2101

Chapter 9

What just happened?
In the first step, we used another helper class of Ogre 3D, called ConfigFile. This class
is used to easily load and parse simple configuration files, which consist of name-value
pairs. By using an instance of the ConfigFile class, we loaded the resources_d.
cfg. We hardcoded the filename with the debug postfix; this isn't good practice and
in a production application we would use #ifdef to change the filename depending
on the debug or release mode. ExampleApplication does this; let's take a look at
ExampleApplication.h line 384

#if OGRE_DEBUG_MODE

cf .load (mResourcePath + "resources_d.cfg");

#else
cf .load (mResourcePath + "resources.cfg");

#endif

Structure of a configuration file

The configuration file loaded by the helper class follows a simple structure; here is an
example from resource.cfg. Of course your resource.cfg will consist of different paths:

[General]
FileSystem:D:/programming/ogre/ogre_trunk_1_7/Samples/Media

[General] starts a section, which goes on until another [sectionname] occurs in the file.
Each configuration file can contain a lot of sections; in step 2 we created an iterator to iterate
over all the sections in the file and in step 3 we used a while loop, which runs until we have

processed each section.

A section consists of ceveral settings and each setting assigns a key a value. We assign the
keyFileSystemtheVdueD:/programming/ogre/ogre_trunk‘l_7/Samples/
Media. In step 4, we created an iterator so we can iterate over each setting. The settings are
internally called name-value pairs. We iterate over this map and for each entry we use the
map key as the type cf the resource and the data we use as the path. Using the section name
as resource group, we added the resource using the resource group manager in step 8. Once
we had parsed the complete file, we indexed all the files.

Creating an application class

We now have the bas:s for our own Ogre 3D application, but all the code is in the main
function, which isn't really desirable for reusing the code.

[211]

Vi
@

The Ogre 3D Startup Sequence

Time for action = creating a class

Using the previously applied code we are now going to create a class to separate the Ogre
code from the main function.

1. Create the class MyApplication, which has two private pointers, one to a Ogre 3D
SceneManager and the other to the Root class:
class MyApplication

private:
Ogre::SceneManager* _sceneManager;
Ogre::Root* root;

2. The rest of this class should be public:
public:

3. Create a loadResources () function, which loads the resources.cfg
configuration file:

void loadResources ()

{
Ogre::ConfigFile cf; "
cf.load(«resources_d.cfg»);

4. Iterate over the sections of the configuration file:
Ogre::ConfigFile::SectionIterator sectionlter =
cf.getSectionIterator();

Ogre::String sectionName, typeName, dataname;
while (sectionIter.hasMoreElements())

{

5. Get the section name and the iterator for the settings:
sectionName = sectionIter.peekNextKey();
Ogre::ConfigFile::SettingsMultiMap *settings = sectionIter.

getNext () ;
Ogre::ConfigFile::SettingsMultiMap::iterator i;

6. Iterate over the settings and add each resource:

for (i = settings->begin(); i != settings->end(); ++1i)
{
typeName = i->first;
dataname = i->second;
Ogre: :ResourceGroupManager: :getSingleton() .
addResourceLocation (
dataname, typeName, sectionName);

[2121

Chapter 9 The Ogre 3D Startup Sequence

12. Then create the createScene () function, which contains the code for creating the
} SceneNode and the Entity:
Ogre: :ResourceGroupManager: :getSingleton() . void createScene ()
initialiseAllResourceGroups(); ({
} Ogre::Entity* ent = _sceneManager->createEntity(«Sinbad.mesh»);
_sceneManager - sgetRootSceneNode () ->attachObject (ent) ;

}

Also create a startup () function, which creates an Ogre 3D root class instance

using the plugins.cfg:)))
] 13. We need the constructor to set both the pointers to NULL so we can delete it even if
?nt startup () it hasn't been assigned a value:

_root = new Ogre::Root («plugins_d.cfg»); P("YAPPI ication()
Show the config dialog and when the user quits it, return -1 to close _sceneManager = NULL;
the application: 7“’0[= NULL;
if (!_root->showConfigDialog())
{ 14. we need to delete the root instance when our application instance is destroyed, so
) return -1; implement a destructor which does this:

~MyApplication()
Create the RenderWindow and the SceneManager: {
i . delete _root;

Ogre: :RenderWindow* window = _root->initialise(true,"Ogre3D } -

Beginners Guide");

sceneManager = root->createSceneManager (Ogre::ST_GENERIC); 5
= g g 9 = 15. The only thing left to do is to adjust the main function:
Create a camera and a viewport: int main (void)
Ogre::Camera* camera = _sceneManager->createCamera("Camera"); { SRR
icati H
camera-s>setPosition (Ogre: :Vector3(0,0,50)); Y ppt N T:\ app;
app.star i
camera->100kAt (Ogre: :Vector3(0,0,0)); pi i up
retu i
camera->setNearClipDistance(5) ; .
Ogre::Viewport* viewport = window-s>addViewport (camera) ; . L
9 P B 16. Compile and run the application; the scene should be unchanged.

viewport - >setBackgroundColour (Ogre: : ColourValue(0.0,0.0,0. 035

camera->setAspectRatio (Ogre::Real (viewport->getActualWidth()) /
Ogre: :Real (viewport->getActualHeight ())); Wha[ius[happened_.‘l
Call the function to load our resources and then a function to create a scene; after We refactored our starting codebase so tha.t different functionalities are better organ:;ed:
- We also added a destructor so our created instances would be deleted when our application

that, Ogre 3D starts rendering:) ; :

is closed. One problem is that our destructor won't be called; because startup () never
loadResources () ; returns, there is no way to close our application. We need to add a FrameListener to tell
createScene () ; Ogre 3D to stop rendering.

_root- >startRendering() ;

return 0;

(241

(2131

~

2/

Chapter 9

Adding a Framelistener

We have already used the ExampleFrameListener; this time we are going to use our own
implementation of the interface.

LS| Time for action - adding a rrmelistener i :

Using the code from before we are going to add our own FrameListener implementation

1. Create a new class called MyFrameListener exposing three publicly visible
event handler functions:
class MyFrameListener : public Ogre::FrameListener

{

public:

2. First, implement the frameStarted function, which for now returns false
to close the application:
bool frameStarted(const Ogre::FrameEvent& evt)

{

return false;

}

3. Wealso need a frameEnded function, which also returns false:

bool framefnded(const Ogre::FrameEvent& evt)

{

return false;

}

4. The last function we implement is the frameRenderingQueued function,
which also returns false:
bool frameRenderingQueued(const Ogre::FrameEvent& evt)

{

return false;

}

5. The main class needs a point to store the FrameListener:

MyFrameListener* _listener;

6. Remember that the constructor needs to set the initial value of the listener to NULL:

_listener = NULL;

12151

(O
N

The Ogre 3D Startup Sequence

7. Let the destructor delete the instance:

delete _listener;

8. At last, create a new instance of the FrameListener and add it to the root object;
this should happen in the startup () function:
_listener = new MyFrameListener();
_root->addFrameListener (_listener);

9. Compile and run the application; it should be closed directly.

What just happened?

We created our own FrameListener class, which didn't rely on the
ExampleFrameListener implementation. This time we inherited directly from the
FrameListener interface. This interface consists of three virtual functions, which we
implemented. We already knew the frameStarted function, but the other two are new.
All three functions return £alse, which is an indicator to Ogre 3D to stop rendering and
close the application. Using our implementation, we added a FrameListener to the root
instance and started the application; not surprisingly, it closed directly.

Investigating the Framelistener functionality

Our FrameListener implementation has three functions; each is called at a different point
in time. We are going to investigate in which sequence they are called.

Time for action - experimenting with the Framelistener
implementation ‘ |

Using the console printing we are going to inspect when the FrameListener is called.

1. First let each function print a message to the console when it is called:

bool frameStarted (const Ogre::FrameEvent& evt)

{
std::cout << «Frame started» << std::endl;
return false;
bool frameEnded (const Ogre::FrameEvent& evt)
{

std::cout << «Frame ended» << std::endl;
return’ false;

}

bool frameRenderingQueued(const Ogre::FrameEvent& evt)

12161

Chapter 9

std::cout << «Frame queued» << std::endl;
return false;

} .

2. Compile and run the application; in the console you should find the first string—
Frame started.

What just happened?

We added a "debug" output to each of the FrameListener functions to see which function
is getting called. Running the application, we noticed that only the first debug message is
printed. The reason is that the frameStarted function returns false, which is a signal for
the root instance to close the application.

Mainloop

4

frameStarted I:> exit

Now that we know what happens when frameStarted () returns false, let's see what
happens when frameStarted () returns true.

Time for action - returning true in the frameStarted function

Now we are going to modify the behavior of our FrameListener to see how this changed
its behavior.

1. Change frameStarted to return true:

bool frameStarted (const Ogre::FrameEvent& evt)

{

std::cout << «Frame started» << std::endl;

return true;

}

2. Compile and run the application. Before the application closes directly, you will see
a short glimpse of the rendered scene and there should be the two following lines in

the output:

Frame started

Frame queued

211

The Ogre 3D Startup Sequence

What just happened?

Now, the frameStarted function returns true and this lets Ogre 3D continue to render
until false is returned by the frameRenderingQueued function. We see a scene this time
because directly after the frameRenderingQueued function is called, the render buffers
are swapped before the application gets the possibility to close itself.

Mainloop

4

frameStarted
rendering the scene

frameRenderingQueued swapping the buffers
'% exit

Douhle buffering

When a scene is rendered, it isn't normally rendered directly to the buffer, which is

displayed on the monitor. Normally, the scene is rendered to a second buffer and when

the rendering is finished, the buffers are swapped. This is done to prevent some artifacts,
which can be created if we render to the same buffer, which is displayed on the monitor. The
FrameListener function, frameRenderingQueued, is called after the scene has been
rendered to the back buffer, the buffer which isn't displayed at the moment. Before the buffers
are swapped, the rendering result is already created but not yet displayed. Directly after the
frameRenderingQueued function is called, the buffers get swapped and then the application
gets the return value and closes itself. That's the reason why we see an image this time.

Now, we will see what happens when frameRenderingQueued also returns true.

Time for action - returning true in the frameRenderingQueued

Once again we modify the code to test the behavior of the Frame Listener.

1. Change frameRenderingQueued to return true:

bool frameRenderingQueued (const Ogre::FrameEventé& evt)

{

std::cout << «Frame queued» << std::endl;
return true;

}

12181

Chapter 9 The Ogre 3D Startup Sequence

2. Compile and run the application. You should see the scene with Sinbad and an

2. Compile and run the application. You should see Sinbad for a short period of time
endless repetition of the following three lines:

before the application closes, and the following three lines should be in the console
output: Frame started
Frame queued

Frame started
Frame ended

Frame queued

Frame ended .
What just happened?
wnatiust’,a””e"edﬂ Now, all event handlers returned true and, therefore, the application will never be closed;
o . it would run forever as long as we aren't going to close the application ourselves.
Now that the frameRenderingQueued handler returns true, it will let Ogre 3D continue
to render until the frameEnded handler returns false.
} /\l:>@
Mainloop frameStarted
@ rendering the scene
frameStarted
frameRenderingQueued

rendering the scene
swapping the buffers

P

frameRenderingQueued

swapping the buffers frameEnded

exit

frameEnded

.

Like in the last example, the render buffers were swapped, so we saw the scene for a short)
period of time. After the frame was rendered, the frameEnded function returned false, Aduing i“n“l

which closes the application and, in this case, doesn't change anything from our perspective.
We have an application running forever and have to force it to close; that's not neat.

= @ = = = Let's add i tand th ibility to cl th lication b ing E5 ;
) Time for action = returning true in the frameEnded function s inpatariiie pusiiiiyamlossieRppleRan PRy SRR

. il { = = = =
Now let's test the last of three possibilities. { é Tlme ﬂ" ac“o“ -,allllllly “"l“l ' o ;

1. Change frameRenderingQueued to return true: Now that we know how the FrameListener works, let's add some input.

bool frameinded (const Ogre::FrameEvent& evt)
1.

{

std::couz << «Frame ended» << std::endl;

We need to include the 01s header file to use OIS:
#include "OIS\OIS.h"

return true;
2. Remove all functions from the FrameListener and add two private members to

store the InputManager and the Keyboard:

0IS::InputManager* _InputManager;

12191 [2201

Chapter 9

10.

OIS::Keyboard* _Keyboard;

The FrameListener needs a pointer to the RenderWindow to initialize OIS,
so we need a constructor, which takes the window as a parameter:

MyFrameListener (Ogre: :RenderWindow* win)

{

015 will be initialized using a list of parameters, we also need a window handle
in string form for the parameter list; create the three needed variables to store
the data:

OIS::ParamList parameters;
unsigned int windowHandle = 0;
std::ostringstream windowHandleString;

Get the handle of the RenderWindow and convert it into a string:

win->getCustomAttribute ("WINDOW", &windowHandle) ;
windowHandleString << windowHandle;

Add the string containing the window handle to the parameter list using the key
"WINDOW":
parameters.insert (std: :make_pair ("WINDOW", windowHandleString.

str(LY)s

Use the parameter list to create the InputManager:
_InputManager = OIS::InputManager::createlnputsystem(parameters);

With the manager create the keyboard:

_Keyboard = static_cast<OIS::Keyboard+>(_InputManager-
>createInputObject (OIS::0ISKeyboard, false));

What we created in the constructor, we need to destroy in the destructor:

~MyFrameListener ()

{

7InputManager—>destroy1nput0bject(AKeyboard);
OIS::InputManager: :destroyInputSystem(_InputManager);

}

Create a new frameStarted function, which captures the current state of the
keyboard, and if Escape is pressed, it returns false; otherwise, it returns true:

bool frameStarted (const Ogre::FrameEvent& evt)

{
_Keyboard->capture () ;
if (_Keyboard->isKeyDown (OIS::KC_ESCAPE))

12211

G

The Ogre 3D Startup Sequence

{

return false;

}

return true;

}

11. The last thing to do is to change the instantiation of the FrameListener to use a
pointer to the render window in the startup function:

_listener = new MyFrameListener (window) ;
_root->addFrameListener(_listener);

12. Compile and run the application. You should see the scene and now be able to close
it by pressing the Escape key. .~

What just happened?

We added input processing capabilities to our FrameListener the same way we did in
Chapter 4, Getting User Input and using the Frame Listener. The only difference is that this
time, we didn't use any example classes, but our own versions.

Ponquiz—thethree event handlers : ‘ '

Which three functions offer the FrameListener interface and at which point is each of
these functions called?

Our own main loop

We have used the startRendering function to fire up our application. After this, the only
way we knew when a frame was rendered was by relying on the FrameListener. But
sometimes it is not possible or desirable to give up the control over the main loop; for such
cases, Ogre 3D provides another method, which doesn't require us to give up the control
over the main loop.

Time for action - using our own rendering loop

Using the code from before we are now going to use our own rendering loop.

1. Ourapplication needs to know if it should keep running or not; add a Boolean
as a private member of the application to remember the state:

bool _keepRunning;

2. Remove the startRendering function call in the startup function.

2221

Chapter 9

3. Add a new function called renderOneFrame, which calls the renderOneFrame
function of the root instance and saves the return value in the _keepRunning
member variable. Before this call, add a function to process all window events:

void renderOneFrame ()

{

Ogre::WindowEventUtilities::messagePump () ;
_keepRunning = _root->renderOneFrame () ;

}

4. Add a getter for the _keepRunning member variable:
bool keepRunning ()
{
}

5. Add awhile loop to the main function, which keeps running as long as the
keepRunni g function returns true. In the body of the loop, call the
renderOneFrame function of the application.

return ”keepRunning;

while (app.keepRunning())

{
}

6. Compile anc run the application. There shouldn't be any noticeable difference to
the last example.

app.renclerOneFrame () ;

What just happened?

We moved the control of the main loop from Ogre 3D to our application. Before this change,
Ogre 3D used an internal main loop over which we hadn't any control and had to rely on the
FrameListener to get notified if a frame was rendered.

Now we have our own main loop. To get there, we needed a Boolean member variable,
which signals if the application wishes to keep running or not; this variable was added in step
1. Step 2 removed the startRendering function call so we wouldn't hand over the control
to Ogre 3D. In step 3, we created a function, which first calls a helper function of Ogre 3D,
which processes all window events we might have gotten from the operating system. It then
sends all messages we might have created since the last frame, and therefore makes the
application "well-betiaved” in the context of the host windowing system.

12231

The Ogre 3D Startup Sequence

After this we call the Ogre 3D function renderOneFrame, which does exactly what the name
suggests: it renders the frame and also calls the frameStarted, frameRenderingQueued,
and frameEnded event handler of each registered FrameListener and returns

false if any of these functions returned false. Since we assign the return value of the
function to the _keepRunning member variable, we can use this variable to check if the
application should keep running. When renderOneFrame returns a false, we know some
FrameListener wants to close the application and we set the , keepRunning variable to
false. The fourth step just added a getter for the _keepRunr{ing member variable.

In step 5, we used the _keepRunning variable as the condition for the while loop. This
means the while loop will run as long as _keepRunning is t rue, which will be the case
until one FrameListener returns false, which then will result in the while loop to
exit and with this the whole application will be closed. Inside the while loop we call the
renderOneFrame function of the application to update the render window with the
newest render result. This is all we needed to create our own main loop.

Adding a camera (again)

We have already implemented a camera in Chapter 4, Getting User Input and Using the
Frame Listener, but, nevertheless, we want a controllable camera in our own implementation

of the frame listener, so here we go.

me for action = adding a frame listene i

Using our FrameListener we are going to add a user controlled camera.

1. To control the camera we need a mouse interface, a pointer to the camera, and a
variable defining the speed at which our camera should move as a member variable
of our FrameListener
OIS::Mouse* Mouse;

Ogre::Camera* _Cam;
float _movementspeed;

2. Adjust the constructor and add the camera pointer as the new parameter and set
the movement speed to 50:
MyFrameListener (Ogre: :RenderWindow* win,Ogre::Camera* cam)

{
_Cam = cam;
_movementspeed = 50.0f;

12241

Chapter 9

Init the mouse using the InputManager:

_Mouse = static_cast<OIS::Mouse*>(_InputManager-
screateInputObject (OIS::0ISMouse, false));

And remember to destroy it in the destructor:
_InputManager—>destroyInputObject(7Mouse);

Add the code to move the camera using the W, A, S, D keys and the movement
speed to the frameStarted event handler:

Ogre: :Vector3 translate(0,0,0);

if (_Keyboard->isKeyDown (OIS: :KC_W))

{

translate += Ogre::Vector3(0,0,-1)

}

if (_Keyboard->isKeyDown (OIS: :KC_S))

{
}

if (_Keyboard->isKeyDown (OIS::KC_A))

{

translate += Ogre::Vector3(0,0,1);

translate += Ogre::Vector3(-1,0,0);

}

if (_Keyboard->isKeyDown (OIS::KC_D))

{

translate += Ogre::Vector3(1,0,0);

}

_Cam->moveRelative (translate*evt.timeSinceLastFrame * _

movementspeed) ;

Now do the same for the mouse control:

_Mouse->capture() ;

float rotX = _Mouse->getMouseState().X.rel * evt. o
timeSinceLastFrame* -1; »’M
float rotY = _Mousef>getMouseState()4Y.rel * evt.

timeSinceLastFrame * -1;
_Cam->yaw (Ogre: :Radian (rotX)) ;
'Cam—>pitch(0gre::Radian(rotY));

The last thing to do is to change the instantiation of the FrameListener:

listener = new MyFrameListener (window,camera) ;

12251

The Ogre 3D Startup Sequence

8. Compile and run the application. The scene should be unchanged but now we can
control the camera:

What just happened?

We used our knowledge from the previous chapters to add a user-controlled camera.
The next step will be to add compositors and other features to make our application
more interesting and to leverage some of the techniques we learned along the way.

Adding compositors

Previously, we have created three compositors, which we are now going to add to our
application with the capability to turn each one off and on using keyboard input.

Time for action~adding compositors

Having almost finished our application, we are going to add compositors to make the
application more interesting.

1. We are going to use compositors in our FrameListener, so we need a member
variable containing the viewport:

Ogre::Viewport* _viewport;

2. We also are going to need to save which compositor is turned on; add three
Booleans for this task:

bool _compl, _comp2, _comp3;

12261

Chapter 9

We are going to use keyboard input to switch the compositors on and off. To be able
to differentiate between key presses, we need to know the previous state of the key:

bool _downl, _down2, _down3;

Change the constructor of the FrameListener to take the viewport as a
parameter:

MyFrameListener (Ogre: :RenderWindow* win,Ogre::Camera*
cam,Ogre: :Viewport* viewport

Assign the viewport pointer to the member and assign the Boolean value their
starting value:

_viewport = viewport;

_compl = false;

_comp2 = false;

_comp3 = false;

_downl = false;

_down2 = false;

_down3 = false;

If the key number 1 is pressed and it wasn't pressed before, change the state of the
key to pressed, flip the state of the compositor, and use the flipped value to enable
or disable the compositor. This code goes into the frameStarted function:

if (_Keyboard->isKeyDown (0IS::KC 1) && ! _downl)
{
_downl = true;
_compl = !compl;
Ogre::CompositorManager::getsingleton(l.setCompositorEnabled(_
viewport, "Compositor2", _compl);

}

Do the same for the other two compositors we are going to have:

if (_Keyboard->isKeyDown (0IS::KC_2) && ! _down2)
{
_down2 = true;
_comp2 = !comp2;
Ogre::CormositorManager::getsingleton().setComposltorEnabled(‘
viewport, 'Compositor3", _comp2) ;
}
if (_Keyboard->isKeyDown (OIS::KC_3) && ! _down3)
{
_down3 = true;
_comp3 = !comp3;

The Ogre 3D Startup Sequence

12211

10.

11

Ogre::CompositorManager::getsingleton().setCompositorEnabled(_
viewport, "Compositor7", _comp3);

}

If a key is no longer pressed, we need to change the state of the key:
if (!_Keyboard->isKeyDown (OIS::KC_1))

{

_downl = false;

}

if (!_Keyboard->isKeyDown (OIS::KC_2))
{

_down2 = false;
}
if (!_Keyboard->isKeyDown (OIS::KC_3)
{

_down3 = false;

}

Inthe startup () function, add the three compositors to the viewport to the end
of the function:
Ogre::ComposltorManager::getSingleton().addCompositor(viewport,
"Compositor2") ;
Ogre::CompositorManager::getsingleton(),addCompositor(viewport,
"Compositor3") ;
Ogre::CompositorManager::getSingleton(),addCompositor(viewport,
"Compositor7") ;

Remember to change the instantiation of the FrameListener to add the viewport
pointer as parameter:

_listener = new MyFrameListener(windot,camera,viewport);

Compile and run the application. Using the 1, 2, 3 keys, you should be able to turn
different compositors on and off. The 1 key is for making the image black and white,
the 2 key inverts the image, and the 3 key makes the image look like it has a smaller
resolution; you can combine all of the effect the way you like:

[2281

Chapter 9

We are going to use keyboard input to switch the compositors on and off. To be able
to differentiate between key presses, we need to know the previous state of the key:

bool _downl, _down2, _down3;

Change the constructor of the FrameListener to take the viewport as a
parameter:

MyFrameListener (Ogre: :RenderWindow* win,Ogre::Camera*
cam,Ogre: :Viewport* viewport)

Assign the viewport pointer to the member and assign the Boolean value their
starting value:

_viewport = viewport;

_compl = false;

_comp2 = false;

_comp3 = false;

_downl = false;

_down2 = false;

_down3 = false;

If the key number 1 is pressed and it wasn't pressed before, change the state of the
key to pressed, flip the state of the compositor, and use the flipped value to enable
or disable the compositor. This code goes into the frameStarted function:

if(fKeyboa:d~>isKeyDcwn(OIS::KCil) && ! _downl

{
_downl = true;
_compl = !compl;
Ogre::CompositorManager::getsingleton().setCompositorEnabled(_
viewport, "Compositor2", _compl);

}

Do the same for the other two compositors we are going to have:

if(_Keyboard—>isKeyDown(OIS::KC_2) && ! _down2)

{
_down2 = true;
_comp2 = !comp2;
Ogre: :ConpositorManager: :getSingleton () .setCompositorEnabled(_
viewport, "Compositor3", _comp2);
}
if(_Keyboard~>isKeyDown(OIS::KCﬁ}) && ! _down3)
{
_down3 = true;
_comp3 = !comp3;

12211

The Ogre 3D Startup Sequence

10.

11

Ogre::CompositorManager::getsingleton().setCompositorEnabled(_
viewport, "Compositor7", _comp3);

}

If a key is no longer pressed, we need to change the state of the key:
if (!_Keyboard->isKeyDown (OIS::KC_1))
{

_downl = false;

}
if (!_Keyboard->isKeyDown(OIS::KC_2))
{
_down2 = false;
}

if (!_Keyboard->isKeyDown (0OIS::KC_3))

{

_down3 = false;

}

In the startup () function, add the three compositors to the viewport to the end
of the function:

Ogre: :CompositorManager: :ge"ésingleton() .addCompositor (viewport,
"Compositor2") ;
Ogre::CompositorManager::gatsingleton().addCompositor(viewport,
"Compositor3") ;
Ogre::CompositorManager::getsingleton().addCompositor(viewport,
"Compositor7") ;

Remember to change the instantiation of the FrameListener to add the viewport
pointer as parameter:

_listener = new MyFrameListener (window,camera, viewport) ;

Compile and run the application. Using the 1, 2, 3 keys, you should be able to turn
different compositors on and off. The 1 key is for making the image black and white,
the 2 key inverts the image, and the 3 key makes the image look like it has a smaller
resolution; you can combine all of the effect the way you like:

2281

The Ogre 3D Startup Sequence

€Y Time for action - adding a plane and a light

Everything we are going to add this time is going in the createScene () function:

Chapter 9

< original 3 —=>

1. Aswe already know we need a plane definition, so add one:
Ogre::Plane plane(Ogre::Vector3::UNIT_Y, -5);
Ogre: :MeshManager: :getSingleton() .createPlane ("plane",
Ogre: :ResourceGroupManager: : DEFAULT_RESOURCE_GROUP_NAME, plane,
1500,1500,200,200,true,1,5,5,0gre: :Vector3: :UNIT_Z) ;

2. Then create an instance of this plane, add it to the scene, and change the material:

Ogre::Entity* ground= _sceneManager->createEntity("LightPlaneEnti
ty", "plane");

_sceneManager->getRootSceneNode () ->createChildSceneNode () -
>attachObject (ground) ;

ground->setMaterialName ("Examples/BeachStones") ;

3. Also we would like to have some light in the scene; add one directional light:
Ogre::Light* light = _sceneManager->createLight ("Lightl");
light->setType (Ogre: :Light::LT_DIRECTIONAL) ;
light->setDirection (Ogre::Vector3(1,-1,0));

4. And some shadows would be nice:

WhatiHSI ha"”e"8d'a sceneManager->setShadowTechnique (Ogre: : SHADOWTYPE_STENCIL
We added the compositors we wrote in the chapter about and made it possible to turn ADDITIVE) ; / - -
them on and off using the 1, 2, and 3 keys. To combine the compositors, we used the fact

that Ogre 3D automatically chains compositors if more than one is enabled. 5. Compile and run the application. You should see a plane with a stone texture and

on top the Sinbad instance throwing a shadow on the plane.

Adding a plane

Without a reference to where the ground is, navigation in 3D space is difficult, so once again
let's add a floor plane.

12301

[2291

Chapter 9

What just happened?
Again, we used our previously gained knowledge to create a plane, light, and add shadows
to the scene.

Adding user control

We have our model instance on a plane, but we can't move it yet; let's change this now.

ime for action=controlling the model with the arrow keys

Now we are going to add interactivity to the scene by adding the user control to the

movements of the model.
1. The FrameListener needs two new members: one pointer to the node we
want to move, and one float indicating the movement speed:
float _WalkingSpeed;

Ogre: :SceneNode* _node;

2. The pointer to the node is passed to us in the constructor:

MyFrameListener(Ogre::Renderwindow* win,Ogre: :Camera*
cam,Ogre: :Viewport* viewport,Ogre: :SceneNode* node)

12311

The Ogre 3D Startup Sequence

3. Assign the node pointer to the member variable and set the walking speed to 50:

_WalkingSpeed = 50.0f;
_node = node;

4. Inthe frameStarted function we need two new variables, which will hold the
rotation and the translation the user wants to apply to the node:

Ogre: :Vector3 SinbadTranslate(0,0,0);
float _rotation = 0.0f;

5. Then we need code to calculate the translation and rotation depending on which
arrow key the user has pressed:

if (_Keyboard->isKeyDown (OIS: :KC_UP))

{
SinbadTranslate += Ogre::Vector3(0,0,-1);
_rotation = 3.14f;

}

if (_Keyboard->isKeyDown (OIS: :KC_DOWN))

{
SinbadTranslate += Ogre::Vector3(0,0,1);
_rotation = 0.0f;

}

if (_Keyboard->isKeyDown (OIS: :KC_LEFT))

{

SinbadTranslate += Ogre::Vector3(-1,0,0);
_rotation = -1.57f;

}

if(_Keyboard->isKeyDown(OIS!:KC_RIGHT))

{

SinbadTranslate += Ogre::Vector3(1,0,0);
_rotation = 1.57f;

}

6. Then we need to apply the translation and rotation to the node:

_node->translate(SinbadTranslate * evt.timeSinceLastFrame * _
WalkingSpeed) ;

_node->resetOrientation();
_node->yaw (Ogre: :Radian(_rotation));

7. The application itself also needs to store the node pointer of the entity we want to
control:

Ogre::SceneNode* _SinbadNode;

12321

Chapter 9 The Ogre 3D Startup Sequence

8. The FrameListener instantiation needs this pointer: @ Time for aclio“ - adding animaﬁﬂn 3

_listener = new MyFrameListener(window,camera,viewport, a?ﬂ W
SinbadNode) ;

Our model can move but it isn't animated yet, let's change this.

9. And the createScene function needs to use this pointer to create and store the 1. The FrameListener needs two animation states:

node of the entity we want to move; modify the code in the function accordingly: Ogre::AnimationState* _aniState;

_SinbadNode = _sceneManager->getRootSceneNode () - Ogre::AnimationState* _aniStateTop;
>createChildSceneNode () ;

_SinbadNode->attachObject (sinbadEnt) ; 2. To get the animation states in the constructor, we need a pointer to the entity:
MyFrameListener (Ogre: :RenderWindow* win,Ogre::Camera*

Compile and run the application. You should be able to move the entity with the cam,Ogre: :Viewport* viewport,Ogre::SceneNode* node,Ogre: :Entity*
ent)

10

arrow keys:

3. With this pointer we can retrieve the AnimationState and save them for later
use:
_aniState = ent->getAnimationState ("RunBase");
_aniState->setLoop (false) ;

_aniStateTop = ent->getAnimationState («RunTop») ;
_aniStateTop->setLoop (false) ;

4. Now that we have the AnimationState, we need to have a flag in the
frameStarted function, which tells us whether or not the entity walked this
frame. We add this flag into the i f coFditions that query the keyboard state:

bool walked = false;
if (_Keyboard->isKeyDown (OIS: :KC_UP))
{

SinbadTranslate += Ogre::Vector3(0,0,-1);
& _rotation = 3.14f;
w"atl"st”a”"e"eﬂ? walked = true;
}

i i keys in the F Listener. Now our entit
We added entity movement using the arrow keys in the FrameLis y /U S S

floats over the plane like a wizard. [
SinbadTranslate += Ogre::Vector3(0,0,1);
_rotation = 0.0f;

Adding animation alked - £7GE,

if (_Keyboard->isKeyDown (OIS: :KC_LEFT))

Floating isn't exactly what we wanted; let's add some animation.

SinbadTranslate += Ogre::Vector3(-1,0,0);
_rotation = -1.57f;
walked = true;

if (_Keyboard->isKeyDown (OIS: :KC_RIGHT))

(2341

2331

Chapter 9

The Ogre 3D Startup Sequence

SinbadTranslate += Ogre::Vector3(1,0,0);
_rotation = 1.57f;
walked = true;

}

If the model moves, we enable the animation; if the animation has ended,
we loop it:
if (walked)

{
_aniState->setEnabled(true);
_aniStateTop->setEnabled(true);
if (_aniState->hasEnded())

{
_aniState->setTimePosition(0.0f);
}
if (_aniStateTop->hasEnded ()
{

_aniStateTop->setTimePosition(0.0f);

}
}

If the model didn't move, we disable the animation and set it to the start position:

else

{

_aniState->setTimePosition(0.0f);
_aniState->setEnabled (false);
_aniStateTop->setTimePosition(0.0f);
_aniStateTop->setEnabled(false);

}

In each framz, we need to add the passed time to the animation; otherwise, it
wouldn't move:

_aniStace~>addTime(evtAtimeSinceLastFrame);
AaniStateTop—>addTime(evt.timeSinceLastFrame);

The application now also needs a pointer to the entity:

Ogre::Entity* _SinbadEnt;

We use this pointer while instantiating the FrameListener:
_listener = new MyFrameListener (window, camera,viewport,
SinbadNode, _SinbadEnt) ;

12351

10. And, of course, while creating the entity:

_SinbadEnt = *sceneManager—>createEntity("Sinbad4mesh"):

11. Compile and run the application. Now the model should be animated when
it moves:

What just happened?

We added animation to our model, which is only enabled when the model is moved.

Have a go hero=looking up what we uset

Look up the chapters where we discussed the techniques we used for the last examples.

We learned a lot in this chapter about creating our own application to start and run Ogre 3D.
Specifically, we covered the following:

¢ How the Ogre 3D startup process works

¢ How to make our own main loop
e Writing our own implementation of an application and FrameListener

12361

Chapter 9

Some topics we have already covered, but this time we combined them to create a more
complex application.

We have now learned everything needed to create our own Ogre 3D applications. The next
chapter will focus on extending Ogre 3D with other libraries or additional features to make
better and prettier applications.

(2311

