
 Containers
hannes@ru.is

Kinds of Standard Containers

• Array

• Dynamic Array

• Linked List

• Stack

• Queue

• Priority Queue

• Tree

• Binary Search Tree

• Dictionary (map)

• Set

• Graph

• Directed Acyclic Graph

Container Algorithms

• Insert

• Remove

• Iterate

• Random Access

• Find

• Sort

Iterators

• The benefits of using iterators:

– Don‘t break the class encapsulation

– Simple to use, even for complex containers

 (make them feel more like arrays)

Algorithmic Complexity

• The time spent on running the algorithm may
be a function of the number of elements in
the container: T = f(n)

• Enough to consider an approximation for f(n)
that gives us the „on the order of“ complexity

O(1) – Not dependent on n

O(n) – Loops over elements

O(n2) – Nested loops

O(logn) – Eliminate ½ of elements every step

Pick a container that provides
the best of these for the
algorithm you will use the
most commonly

Container Characteristics

• What is the memory overhead required?

– E.g. pointers that need to be stored

• Is the data stored contiguously in memory?

– This has great impact on cache performance

Build Your Own?

• STL

+ Robost, rich, included

- Slower (generic), memory hog, dynamic allocation,
not same on all compilers (use STLPort)

 Use when memory is not at premium

• Boost

+ Works around STL problems, solves complex
problems (e.g. smart pointers), well documented

- Huge Lib files, not guaranteed code, lack of
backward compatability, particular license

Build Your Own? (cont.)

• Loki

+ Tricks compilers to do things they were not
designed to do through „template
metaprogramming“

- Hard to understand

Dynamic Arrays

• Fixed size c-style arrays are good!

– No new memory allocation

– Contiguous memory (good for caching)

• Dynamic arrays sometimes needed

– Buffer can be grown as needed (by n or by doubling)

– Actually new buffer allocated, then data copied

• This is costly!

– Maybe use this at development time and then
change to fixed size when we know the biggest size

Linked Lists

• Extrusive List

– Link structure is separate from the elements

– + Elements can be in many lists

– - Link objects dynamically allocated

• Intrusive List

– Link structure allocated as part of elements

– + You get links „for free“

– - Elements stuck in one list at a time

Linked Lists (cont.)

• Circular Lists store the root also as a regular
link, where the Next and Prev pointers serve
as the Beginning and End pointers

– Simplifies the algorithms

Dictionaries and Hash Tables

• Dictionaries implemented as:

– Binary Tree

• Key-value pair in each node (key sorted)

• O(logn)

– Hash Table

• Fixed size key slot table

• O(1) in the absence of Collision

Collisions Resolved

• Open Table

+ Linked list at each index can grow indefinitely

- Dynamic memory allocation

• Closed Table

Use Probing for empty slots (while they exist)

+ Fixed amount of memory (good on consoles!)

- Upper limit

Hashing

Hash value: h = H(k)

Table index: i = h mod N

Hash function H:

– is crucial for distributing the keys well

– has to be quick

– has to be deterministic

Probing

• Different ways

– Linear

– Quadradic (to avoid clustering of keys)

Strings

• Tricky!

– Not an atomic type

– Often require localization

– Often used as internal names

• How you handle them Major ramifications

String Class

• Dangerous

– Expensive copying if not careful

– May rely on dynamic memory allocation

– May or may not be optimized (find out)

• Justifiable when you have special kinds of
strings, e.g. Filepaths

Unique Identifiers

• Objects and Assets need identification

– Often done with Strings

– GUIDs are too cryptic

• BUT we need fast comparisons!

– Compare hash-codes (integers) instead

– Hashed strings called „Names“ in UE

• Replace Strings with IDs

– At Preprocessing stage

– Definitely not every time you use the string

Localization

• What might you need to localize?
– Visible strings

– Textures / Signs

– Sounds

– GUI layout

– Ratings

– Sensored contents

– Cultural aspects

• Requires an internationalized software
development approach

Unicode

• Itself not a mapping to bit patterns in memory!

– Instead maps letters to code points

• However UTF-16 encodes code points in two
bytes for each letter (note endedness!)

– Waste of space a lot of the time

• UTF-8 brilliantly encodes code points in both 1
and 2 bytes, with 1 byte characters sharing the
encoding scheme with ANSI

String Databases

• For localization, visible strings are kept in a
table with multiple translations

– Simple (e.g. CSV text files)

– Complex (e.g. Oracle databases)

• Looked up via IDs

• Sometimes distributed

– Work distributed across various countries

Engine Configuration

• Location
– Text configuration file (INI, XML, ...)

– Compressed binary

– Windows registry

– Command line options

– Environment variables

– Online user profile

• Per-User locations

– Disk slots/folders, „Application Data“,
„HKEY-CURRENT_USER“, $HOME

Example Configurations

• Quake CVARs

– Global linked list of strings or floats

– Manipulated in console, dumped to config.cfg

• Ogre 3D

– Collection of INI files e.g. ogre.cfg, resources.cfg

– Manipulated through Ogre::ConfigFile

• Uncharted

– INI style text file manipulated through flexible menu

– Also Scheme data definitions for complex data

