Start-Up and Shut-Down




Subsystem Start-up and Shut-Down

* Interdependence of subsystems
- required order for start-up and shut-down

* Often subsystems are singleton classes
WELREEES,




Static Initialization

class RenderManager {

public:
RenderManager() {
// Start up the manager

}
~RenderManager|() {

// Shut down the manager
}

5

static RenderManager gRenderManager;




Static Initialization

Global and static objects are
constructed before main() is called and
destroyed after main() returns

BUT: In unpredictable order!




Initialization

e Typical solution

— The global singleton is a static variable inside a
,get()” function, so initalized when retrieved for
the first time

e Problems
— ,get” is not an obvious initialization function

— Destruction is still arbitrary




Initialization

e Better Solution
— EXPLICIT startup/shutdown




Explicit Initialization

class RenderManager {

public:
RenderManager() { // nothing }
~RenderManager() { // nothing }
void startUp() { // initialize here }
void shutDown() { // clean up here }

Iy
RenderManager gRenderManager;
int main(int argc, const char* argv) {

gRenderManager.startUp(); ... }




Initialization

e Better Solution

— EXPLICIT startup/shutdown
e Benefits

— Simple

— Explicit

— Facilitates debugging




Memory Management




RAM and Performance

e RAM use affects performance
1. Dynamic allocation is slow
2. Memory access patterns are important




Dynamic Allocation

e OS Heap Allocator is complex and deals with
things like contention between threads.
Context switching often required.

* Avoid as much as possible and never use this
allocator in a tight loop!

e Games typically implement their own memory
allocators.




Custom Memory Allocators

e STACK-BASED Allocators

— Allocates a contiguous block that can grow

— Only able to free by popping back to a marker
e DOUBLED-ENDED STACK Allocator

— Two stacks, one from each end

— One stack for ,,slowly” changing data (e.g. levels)
and one for ,faster” changing data (e.g. temps)




Custom Memory Allocators

e POOL Al
—Only a
— Free b

ocators

locate same sized blocks

ocks kept in a single linked list

— Fast manipulation
e ALIGNED Allocators

— When allocators make sure that returned
addresses are properly data aligned for the CPU

— Typically allocate additional size of alighment and
then adjust address upwards until it fits




Custom Memory Allocation

e SINGLE-FRAME Allocators

— A single stack allocator that gets cleared at
beginning of every render loop

e SOUBLE-BUFFERED Allocators

— Two stack allocators that get swapped at
beginning of every render loop, and then the new
current one gets cleared

— Data from previous frame still available

Danger: Memory , destroyed” instead of freed




Memory Fragmentation




Memory Blocks

e Allocated memory blocks must be contiguous

 Problem is that after many allocations and
freeing of memory, there will be free areas of
various sizes, but perhaps none big enough to
hold a single large memory block

* This is the problem of fragmentation




Avoiding Fragmentation

e Use

—Stack allocator (always contiguous)

— Pool allocator (always same block size)




Defragmentation

e Combine all the free memory into a
contiguous block

e Could shift allocated blocks to lower
addresses, letting the free memory

_bubble up“




Defragmentation: Relocation

e Shifting allocated memory requires the
relocation of pointers!

— Need to find those pointers and change them
— This can be hard
* Possible to use

— Smart pointers: Classes that register themselves

— Handles: Indecies into pointer tables




Defragmentation: Reduce cost

e When blocks are relatively small, it is easy to
spread their defragmentation across many
HEINES

e Possible to break up larger blocks




Cache Coherency




Cache Levels




Types of Cache

e Data Cache (D-Cache)

— Cache lines contain data that hopefully gets used
next

e Instruction Cache (I-Cache)

— Cache lines contain machine code that hopefully
gets executed next




Avoid Misses

e Avoid D-Misses

— Organize data contiguously
— Keep it in small chunks (to fit in cache line)

e Avoid I-Misses

— Keep high-performance machine code
as small as possible

— Avoid calling functions from high-performance code

— Place other functions close by
(translation units stay together in memory)




