Rendering




Rendering a 3D Scene

* Involves these basic steps
— Describe Virtual Scene
— Placing Virtual Camera (virtual light sensors)
— Define Light Sources
— Define Visual Properties of Surfaces
— Solving the Rendering /Shading Equation




Goal of Rendering

UnrealEngine

* A real-time engine has at mose 33.3 ms to
generate each image (for 30 FPS)




Describing a Scene

* Scenes are composed of Objects
— Opaque
— Transparent
— Translucent

=
o

§ €5

(@)

- nR

>

| -4 8]

- -

Q

(@]

>

(Vp]

c

O
B

]

e Opaque objects can be rendered considering
only the surface

e Real-time engines deal with opaque surfaces
and approximate transparcy with alpha




Representing Surfaces

Parametric Surface Equations
Patches (Bézier, NURBS)
Subdivision Surfaces

Triangle Meshes




Triangle Meshes

* Triangles as a piece-wise linear approximation
to a surface.

* Triangles the polygon of choicec for real-time
rendering because:
— Simplest polygon
— Always planar
— Remain triangles under most transformations

— Hardware for triangle rasterization




Tessellation

The process of dividing a surface up into a
collection of discrete polygons (triangles or
quads)

Triangulation is tessellation of a surface into
triangles

ldeally tessellate as much as needed for
camera




Tessellation and LOD

e Approximate right density of tessellation with
Level of Detail (LOD) versions of objects

6.000 600
DISTANCE TO CAMERA




Tessellation and Detail

e Dynamic Tessellation
— Grid patterns e.g. for terrain

— Fewer and fewer grid points used for tessellation
further away from camera

 Progressive Meshes
— Single high-resolution mesh

— Automatically detessellated
furthe away
(collapsing edges)

Junho Kim




Constructing Triangle Meshes

* Pick a Winding Order

— Counterclockwise typical (but arbitrarily picked)
— Determines which side is front and which is back

* Triangle Lists

— List vertices in groups of three




Constructing Triangle Meshes

* Indexed Triangle Lists
— Duplicated vertices waste memory and GPU cycles

— Store vertices once in Vertex Buffer and use light-
weight indecies in an Index Buffer to define the
triples of triangle vertices




Constructing Triangle Meshes

e Triangle Strips and Fans eliminate need for an
index buffer while still reducing vertex
duplication

e Predefined order of vertices

e Combined in a certain way to form triangles




Vertex Cache Optimization

e As vertices are processed by vertex shaders
they are cached for reuse

e Strips and fans improve cache coherency

* A vertex cache optimizer can manipulate other
triangle meshes offline to optimize vertex
reuse




Model Space

e Positions of triangle vertices given relative to

coordinate system called model space (also local
or object space)

* The orientation of this coordinate system is
arbitrary but typically aligned with a front,
(right), up direction




Instancing in World Space

e Mesh instances are positioned and oriented in
a scene with respect to a world space
coordinate system

e The mesh’s vertices are converted from model
space to world space using a model-to-world
matrix

Special care has to be taken when converting
normals from model to world space. Need to
use inverse transpose matrix if scale and shear




Visual Properties of Surfaces

* How does light interact with the surface?
— Surface Normal
— Diffuse Color
— Shininess / Reflectivity
— Roughness or Texture
— Degree of Opacity or Transparency

— Index of Refraction




Light and Color

Light is electromagnetic radiation

Color determined by intensity and wavelength
Visible light in 740nm to 380nm range

Beams can contain one or more wavelengths




Light-Object Interactions

* Many complex interactions with matter

e Goverened by
— Medium
— Interface between media

e Surface is an interface between media




Light-Object Interaction

e What can light do?
— Be absorbed
— Be reflected

— Be transmitted through an object and be refracted
in the process

— Be diffracted when passing through narrow
openings (not usually modeled)




Light-Object Interaction

Certain wavelengths absorbed by surface,
others reflected

Those not absorbed give off the perceived
color

Reflected can be diffuse (scattered equally in
all directions) or specular (reflect directly or
spread in narrow cone)

Transmitted through volume, light can be
scattered, partially absorbed or refracted




Color Spaces and Color Models

Color model three dimensional because of
three types of color sensors (cones) in our
eyes, which are sensitive to different
wavelengths of light

Most commonly RGB
— RGB888 uses 8 bits per channel
— RGBA adds alpha channel




Vertex Attributes

 The simplest way to describe the visual
properties of a surface is to specify them at
discrete points on the surface

e Vertices are such points

* Visual properties in vertices are called vertex
attributes




Vertex Attributes

Position vector

Vertex normal

Vertex tangent and bitangent (tangent space)
Diffuse color

Specular color

Texture coordinates

Skinning weights




Vertex Formats

Vertex attributes are stored within data
structures called vertex format

Not all combinations of vertex attributes can

oe handled by all hardware, therefore these
nave to be compatible

However, modern GPUs are capable of

extracting the subset of attributes that they
actually need




Attribute Interpolation

Attributes at a triangle’s vertices are
discretized approximations to the visual
properties of the surface as a whole.

When rendering the triangle, the interior as
,seen” through each pixel on the screen
matters

Simple linear interpolation of per-vertex
attributes to determine per-pixel attributes is
possible




Attribute Interpolation

e Gouraud Shading is an example of per-vertex
color attributes interpolated to determine per-
pixel color




Vertex Normals and Smoothing

e Simplest way to light a mesh is to calculate
color per-vertex, using the vertex normal and
direction to light source

* Normals can be made to point in such a way
that the interpolation across the entire surface
Is smooth, resulting in rounded corners




Per-vertex Lighting Error

* Linear-interpolation of per-vertex data can
cause visual errors

 For example when rendering specular
highlights (the highlight calculated at a vertex
gets spread out towards the other vertices)

Per-vertex lighting r.*a Per-pixel lighting




Textures

One way to provide per-pixel information is
through texture maps

Textures can contain color information,

applied to the interiors of triangles of a mesh

Textures can also contain other information
for per-pixel calculation, e.g. normals

Individual picture elements of textures are
called texels (different from on-screen pixels)




Textures

e Typically texture sizes have to be powers of
two and possibly even square

— 512x512 or 1024x1024 are common
e Types of textures include

— Diffuse maps (diffuse color)
— Normal maps

— Gloss maps

— Environment maps

— ...and just about anything we need for calculation




Texture Coordinates

2D textures need to be projected onto a 3D
mesh so that values can be looked up for each
interior triangle pixel

Fach texture exists in texture space (uv space),
where coordinates range from (0,0) to (1,1)

The projection is made possible by storing
texture (u,v) coordinates with each vertex in
the mesh, mapping each triangle onto a 2D
triangle in the texture




Texture Addressing Modes

e Texture coordinates are permitted to be
outside the [0, 1] range

 What happens outside of the range is
determiend by the texture addressing mode
— Wrap
— Mirror
— Clamp

— Border color




Texture Formats

e Texture bitmaps typically stored as
— Targa (.tga)
— Portable Network Graphics (.png)
— Windows Bitmap (.bmp)
— Tagged Image Format (.tif)

e Compressed textures also supportd, e.g.
DirectX supports DXT texture compression




Texel Density

Texel Density is the ratio of texels to pixels

— Imagine viewing the texels through a single pixel
on the screen

When low, we see the edges of the texel

When high, image may band or swim, and
memory is wasted

Texel density of 1 would be ideal




Mipmapping

 \We can approximate texel density of 1 with
Mipmapping

* Mipmaps of a texture are lower-resolution
versions, each half the height of previous one

* Graphics hardware picks the mip level that
produces the best texel density

128 %128 64x64 32x32 16x16 8x8 4x4 2x2




World Space Texel Density

We can also measure the ratio of texels per
world unit of measurement

E.g. texels per meter or cm

A low ratio may result in washed out
environments

Studios provide guidelines for this per game
title




Texture Filtering

When rending a pixel of a textured triangle,
the hardware samples the texture map by
seeing where pixel falls in texture space

Not usually a one-to-one mapping between
texels and pixels

May need to sample more than one texel and
blend together — texture filtering




Texture Filtering

 Most graphics cards support

— Nearest neighbor: Just pick the closest texel and
mipmap

— Bilinear: Four surrounding texels blended in the
nearest mipmap

— Trilinear: Do bilinear filtering on two nearest
mipmaps, then interpolate (less abrupt mip levels)

— Anisotropic: Samples texels within trapezoidal
regions based on view angle




Materials

A material is a complete description of the
visual properties of a mesh
— Textures mapped onto surface
— Shader programs used
— Shader inputs
— Etc.

Vertex attributes typically not part of this, but
mesh-material pairs often called render
packets




Light Transport Models

* Mathematical models of light-surface and
light-volume interactions

* Divided up into Local illumination models and
Global illumination models

e Direct lighting is a simple local illumination
model (phong lighting)

e Indirect lighting is an example of a global
illumination model (ray tracing, radiosity)




The Phong Lighting Model

* Models light reflected from a surface as a
sum of

— Ambient term
— Diffuse term

— Specular term




Light Sources

* Approximations of real-world light sources
— Static lighting
— Ambient lights
— Directional lights
— Point lights
— Spot lights
— Area lights
— Emissive lights




