T-637-GEDE Game Engine Architecture
Problem Set 1

Problem 1 - Engine Design (25%)

Imagine that you are developing a game engine that you want to use with your own game but also
license to other developers. At some point you have to implement an in-game inventory system,
where the player can bring up a decorative window that contains a visual representation of all held
objects, which he can then equip/use, combine, drop or examine. How much of this inventory system
would you implement as part of your game engine and how much would be game specific? How does
this depend on what genre of games your engine should support? What other game engine
components would you be relying on? What possible platform specific things might you have to
consider?

Problem 2 - Ogre Project Setup in VS (25%)

Follow the instructions on the wiki page for creating your own Ogre application from the Ogre source
code (http://cadia.ru.is/wiki/public:t-gede-12-1:buildingogrefromscratch). There are a few things you
can improve about this project setup:

1. MAKE YOUR PATHS SYSTEM CONFIGURABLE: Notice that in the build configuration given
above, you are using fully specified paths to the various directories. Change this so that you
can define system wide environment variables that hold the locations of the Ogre source
directory and the Ogre built directory, and then use those environment variables in your
build configurations. E.g. one could define the variable SOGRE_SOURCE (at the
system/windows level) and give it the value "C:\Development\ogre_src_v1-7-3" and
therefore not have to mess with any of the build configurations when moving the project to
a different machine, only change the value of SOGRE_SOURCE and SOGRE_BUILT.

2. PREPARE A RELEASE BUILD: The build configuration given above is only for a DEBUG build.
Create a working RELEASE build configuration as well. Notice that some of the configuration
is exactly the same for both targets — Make use of the "All Configurations" configuration for
everything that remains the same for both configurations. The main difference between
them for this application is that libraries that are compiled with debug information typically
have "_d" appended to their names. Clearly those versions of the libraries should not be used
in a release build. Remember to copy the release versions of the Ogre configuration files into
your application directory (ogre.cfg, resources.cfg and plugins.cfg).

3. COMPILE WITH A DIFFERENT MODEL FOR RELEASE AND DEBUG: Tell the preprocessor to pick
a different model to load in the "CreateScene" function, depending on whether you are
building for DEBUG or RELEASE. Use the "ogrehead.mesh" for RELEASE and "cube.mesh" for
DEBUG.

Submit a zipped copy of your application directory (that includes your solution, project, configuration
and source files).



Problem 3 - Representing Numbers [25%)
Show how you find the decimal value of the 32-bits 0x8000000F

1. ..asanunsigned integer
2. ...asasigned two's complement integer
3. ...as alEEE-754 floating point number (may need more than the text book)

Problem 4 - Memory Layout (25%)

Consider the following C program. Draw two diagrams: One that represents a possible arrangement
of the executable image on disk and one that represents the possible program memory layout right
after the line value = value + answer; has been executed. Use names of variables and
functions to identify memory locations they refer to.

main.c
calculate.h

#include "calculate.h #include <malloc.h>

voidlgof) { i #include <string.h>
ca_cu ate_answer(); #include <stdio.h>
printf('%d\n', answer);

} ] int answer;
int main() { char* s-

char name[] = a?swer ; void calculate_answer();
s = calloc(10, sizeof(char));

strncpy(s,name,6);
goQ;

free(s);

return O;

}

calculate.c

#include "calculate.h"
static int b = 10;
static int c;

static void print_answer(int answer) {
static value = 0;
value = value + answer;
printfF("%s: %d\n",s,value);

}

void calculate_answer() {
int a = 3;
c = a*b;

answer = 20;
print_answer(answer+c);

}



