Networks, Protocols and
Distributed Systems

A Slightly Theoretic Crash Course

Haraldur Darri borvaldsson

Overview of this Talk

Networks as graphs of queues

Blocking / Non-Blocking program styles
Reliable / Unreliable network channels
Concrete examples: TCP, UDP

MMO'’s Abstracted: Shared Distributed State
Wider applicability of network model

Networks as Graphs of Queues

Typical Diagram View: some abstractions, a dash of hardware ...

Communication

< —>

Network
Interface

computer = Network computer

Today: Programmer’s View / Model: Queues of Messages

send / enqueue

Message Queues (Channels)

receive / dequeue

The Basic Distributed Systems Model

= W

R

A bunch of nodes exchanging messages across
dedicated channels: pairs of uni-directional queues
Nodes cannot observe or modify other nodes directly
 Allinter-node effects are through messages

The Life of a Node

* A node has a sequence of events, which can be:

1. A computation step (changing node’s state)

e Basically: the sequential execution of a program snippet
2. A send event (enqueues a msg on a channel)
3. Areceive event (dequeues a msg from a channel)

* A message contains a finite amount of data

— For example: a string over some alphabet
* Physical messages (packets) typically 50-9000 bytes

* No model of time; only sequences of events

The Life of a Channel

When a message is enqueued to a channel:
— Appends message to end of its queue

When channel asked to dequeue a message:
— Removes and deliver msg at front of its queue

This describes a “perfect” reliable channel

— Real networks fail, we mitigate with clever
software as much as possible

Example: Transmission Control Protocol (TCP)
— Delivers the correct bytestream (if anything)

Distributed Algorithm / Protocol
Simple Example: Load Balancing

Two nodes execute the following pseudo-code:

mylLoad = ComputeCurrentLoad()
send(myLoad)
remoteload = receive()
halfLoad = (myLoad + remoteload) / 2
EvElls if myLoad > halfLoad:
hand off (myLoad — halfLoad) units of work
else if myLoad < halfLoad:.
take on (halfLoad — myLoad) units of work

Networking
events

Computation

Animimated of Algorithm Instance

myLoad

Animimation of Algorithm Instance

-<]| >-

rest of rebalancing takes place,
somehow ...

Timing Diagram of Algorithm Instance

e Show order of events (or time) at each node
as a long horizontal or vertical arrow

— After all, nodes are independent / concurrent

e Draw an arrow from each send event to its
corresponding receive event

What was A doing here? or here?

compute 7 send 7 . reveive 3 compute diff
g Se=—: =

compute diff

compute 3 send 3 ﬁceive 7

Here A is waiting
(for a message)

Here A is working

Timing Diagram of Algorithm Instance

 Show computation events as thick bars
* Absence of bar means waiting for a message

* Questions:
1. How does a node’s program “wait”?
2. What happens if a message never arrives?

send 7 reveive 3 compute diff

compute 7
- — IO o- I
. compute 3 Mcompute diff

Answers, for our example

e Our example’s receive() call blocks

— If input channel is empty, node execution
suspends until remote node enqueues a message

 Problem: if remote node never enqueues a
message we’ll wait “forever”!

— A new, exciting way for programs to run forever (in
addition to infinite loops in sequential program)

— We’'ll say more about failures later

Blocking of Sends

 We could model channels as having infinite
space for messages (even more perfect!)

 But we’ll be more realistic and say: channels
have a finite capacity.

e Hence, send() can also block, when channel
is full, with no space for additional messages

— Execution resumes once remote node dequeues a
message, freeing up space in the queue

To Block, or Not to Block

e Pro: blocking is relatively simple/easy

— Sends and receives look like computation events,
program looks a lot like a sequential program

— Terminology: the execution appears synchronous
e System execution is deterministic, given start state

— Waiting is implicit: programs don’t check them but
proceed as if they’re always in a ready state

e Con: can limit performance and interaction styles
— Suspending / resuming execution carries costs
— Strict request / response messaging can be restrictive

Non-Blocking Alternative: Polling

 Add new non-blocking event: receive if()

— Returns a message if qgueue non-empty or else a
“queue empty” indicator

— Node can go do something else, when queue empty
— New send_1T() event may return “queue full”

* Program acknowledges time, is asynchronous
— System is now inherently non-deterministic

 Permits one node to handle multiple queues
— Poll them in turn, handle those that are ready

Example: Publish/Subscribe w Polling

clients

channel 1-A -1
L | .| -8
channel A-1

server

- -H .. - B

Client n Code for Publish/Subscribe

do forever:
msg = receive_if(A-n)
if msg # “queue empty”:
var, val = unpack contents of msg
update variable “val” with value “val”
... compute something for a while ...
for each variable var | want to set to value val
msg = pack “var” and “val “ into a message
if send_if(n-A, msg) = “queue full”:
exit

Alternative: wait a little while, then try again

Server Code for Publish/Subscribe

sndChannels = {A-1, A-2, A-3}
do forever:
for rchin {1-A, 2-A, 3-A}:
msg = receive_if(rch)
if msg # “queue empty”:
var, val = unpack contents of msg
update my variable “val” with value “val”
for sch in sndChannels:
if send_if(sch, msg) = “queue full”:
remove sch from sndChannels

Real Network Channels Fail!

e \WWe can model such unreliable channels:

— Asked to enqueue, channel might:

e Do nothing at all (drop messages)
— Note: same as send__1T() with a full channel

e Append a different msg (corrupt messages)

— Asked to dequeue, channel might:
 Remove and deliver a different msg (reorder messages)
e Deliver a msg but not remove it (duplicate messages)

 Example: Internet’s User Datagram Protocol (UDP)
— Msg drops, reorders, duplicates

Queue Model of UDP/IP

* Each network interface of an Internet device is
identified by a globally unique IP Address
— A 32-bit integer, e.g. 82D0F047 hexadecimal
— Written as dot-separated decimals, from most to
least significant byte, e.g. 130.208.240.71
e A UDP “channel” comprises an IP Address and

a UDP Port: a 16-bit integer
— Ports below 1024 are allotted by convention to

“well known services”, such as DNS.
My main DNS server is at 46.22.96.35 : 53

Sending / Receiving UDP Messages

 UDP is connectionless: you send a message to
a channel anytime (via OS’s APlIs, e.g. socket)
— But you have no idea if it gets delivered or not
— Can be up to ~64KB in size, but prefer < 1500
bytes, or a few KB at most
* To receive UDP: bind as a listener of some
port P (via OS’s API, e.g. socket)

— You will receive (a subset of the) UDP messages
sent to channel: your-IP-Address : P

Example: Reliable Communication

 Want to exchange an ordered sequence of
messages over an unreliable channel that
drops, duplicates and reorders messages

— This is what TCP provides, on top of the unreliable
Internet Protocol (IP) packet delivery service

— UDP is a very thin layer on top of IP

 a———

Reliable Messaging: Sender Protocol

What’s a good value for “little while”?

global numSent =0
// channel now represents both send and recv queues
function reliable_send(msg, chanpel):
numSent = numSent + 1
do forever:
send_if(channel, (num
wait for a little while
reply = receive_if(channel)
if reply # “queue empty”:
numReceived, msg = unpack reply
if msg = “ACK” and numReceived = numSent:
return

Reliable Messaging: Receiver Protocol

global numReceived = 0
// channel now represents both send and recv queues
function reliable_receive(channel):
do forever:
packet = receive_if(channel)
if packet # “queue empty”:
packetNum, msg = unpack packet
if packetNum = numReceived + 1
numReceived = numReceived + 1
send_if(channel, (“ACK”, numReceived))
return msg
send_if(channel, (“ACK”, numReceived))
wait a little while

Let’s Check our Protocol

 The channel is our adversary: it misbehaves and tries
to confuse us. Try protocol with:

— Dropped, re-ordered, duplicate messages
— Dropped, re-ordered, duplicate ACKs

 Below is the failure-free, happy case:

send (1, “Bla”) receive (1, “ACK”)

= _l

receive (1, “Bla”) send (1, “ACK”)

Take-home Points

* Designing robust network protocols is difficult

— Have to anticipate and handle every type of failure
that can occur, at any stage in the protocol

— The Message Queue/Event model can help a lot
* Use existing building blocks whenever possible

 For example: UDP is rarely beneficial. Better
to use a reliable transport, like TCP
— You’ll end up re-implementing TCP anyway
— Possible exception: fast-paced networked games

TCP vs. Our Toy Protocol

* Transmits byte sequences, not discrete messages

— You send a byte buffer, TCP chops it up into segments
(packets) any way it pleases, ACKs byte seq positions.

— You must provide message framing, e.g. prepend the
length of your messages to their data

e Buffers sent and received data and has multiple
segments “in flight” on network at the same time

— Message-by-message “ping-pong” would be way to slow
* Performs flow-control and congestion avoidance

— Adjusts transmission rate to current network bandwidth
and shares bandwidth fairly with other connections

Queue Model of TCP/IP

 TCP is connection-oriented: you establish a
connection with a remote node before
exchanging messages with it

— To agree on initial sequence numbers, etc.

 We can model this as creating a new channel
— We thought of UDP channels as pre-existing

 ATCP channel is globally/uniquely identified
by two IP Address:Port pairs

— The IP Addresses of the two nodes involved

Queue Model of TCP/IP, Continued

These nodes are playing the roles of clients connecting to server. They choose their ports at will.

22.2.2:2-123.4:1

1.2.3.4:1-2.2.2.222 \-

Node: 1.2.3.4

Uses port: 1 3.333:2-1.23.4:1

1.2.3.4:1-3.3.3.3:2

3.3.3.3:3-1.2.3.4:1
1.2.3.4:1-3.3.3.3:3

Node: 2.2.2.2
Uses port: 2

Node: 3.3.3.3
Uses ports: 2, 3

This node is playing the role of a server, accepting connections at a “well-known” port

(e.g. port 80 for http, the World Wide Web protocol)

Queues Are Real!

 Networking hardware/software full of queues

computer

router
smartphone

Modeling Multi-User Games

Multiple nodes hold a copy of some state

We want them to behave as if there was a
single shared instance of the state

— They can’t really, can only exchange messages

Nodes that (propose to) mutate state must
notify other nodes, which update their copies

Problem: nodes can diverge: breaking illusion
— Can mutate differently or in different order

Replicated System Problems

* First-Order problem: conflicting updates

]
]
/[

Kk
JE
v[o]

Near-Universal Solution: Master/Slave

* One node is the master for updates, the other
slave nodes forward their updates to master

(=

X xea X
Lo | (o]

In essence: we ensure everyone’s receive queue looks the same as the master’s queue

So far, so good but ...

 What we’ve shown is basically a distributed
cache, where slaves are eventually consistent

— Master is authoritative. It is in a position to
authenticate, modify or reject changes

— MMOs usually have a permanent, trusted master
(operated by game corp) since end-user cheat!

* Problem: a slave’s decision to mutate may
have been based on stale (old, obsolete) data

— For example: shot a dude who had moved away

Inconsistent Execution / Race Condition

e The state is shared but the simulation is not

o]

When the node computed
update x<3, x had value “2”.
Does update still make sense?

Solution 1: DB-Style Distributed Locking

. Slave sends master a request to lock the set
of variables it wants to read and/or update

. The master acknowledges the request, if no
other node has any of the variables locked

— Otherwise: rejects or delays the lock request

3. Slave then executes event and sends update
— No inconsistency, other’s can’t modify the vars

4. Master updates and unlocks

Problems with Locking

 Low performance: slaves spend at least a
message round-trip waiting, for each update

— This alone rules out locking for most games

e Fault-tolerance: if slave crashes or loses
connection, variables left in locked state

* Deadlocks: lock requests can form circular
wait-for dependencies

— Not a biggie, master can detect such cycles and
break them by rejecting one of the lock requests

Solution 2: Optimistic Concurrency Control

* Give master enough information to be able to
reject updates based on (possibly) stale data

— Slave sends with updates the read set of variables
read by event’s execution, as well as their values

— Master checks if all of an update’s read-variables
still have these value. If not, rejects update

e Alternative: master tracks which updates each
slave has received and rejects updates if any
read-set value has changed (disregarding values)

Optimistic Conc Ctrl in Action

e Server verifies updates were made assuming
correct variable values

i

Optimistic Concurrency Control Pro & Con

 Pro: when there are no conflicts, there is no
waiting and no additional delay

 Con: read-sets can be large, eat network
bandwidth

* Con: high contention (many conflicts) may
cause livelock : some slave keeps losing out
— For example: a slave with high network latency
— Can be hard to ensure fairness for all nodes

Solution 3: Share Execution, not Updates

* [nstead of sending state mutations, slaves
send user input (mouse/keyboard) to master

 Master executes total simulation and
distributes resulting state updates to slaves

_
-

Shared Execution Pro & Con

* Pro: works well, this is essentially how most
quick-paced games do it (FPSes, e.g.)
— Games no longer treated as a database problem
* Con: centralized master limits scalability

e Con: large delay from mouse/keyboard action
to effect on screen (e.g. turning head)
— On the order of a network round-trip, 10s of ms
— Makes players sick / drives them crazy

Solutions to Shared Execution Delay

* Prediction: slaves also execute game logic,
assuming immediate effect of user’s input

— Predict how player’s character moves, predict how
other user’s characters will move.

 \WWhen master sends actual / authoritative
updates, slaves must reconcile their local
version using updates, converge to master

— Shift characters towards correct position, e.g.

This is not a fully solved problem

 FPS engines (Quake, Unreal ...) have finely
hand-tuned, fairly ad-hoc solutions

— Separate predictions for character running,
jumping, gun shots, flying grenades ...

— Heavily optimized/compressed encoding of
update packets, to conserve bandwidth

* Can be solved generally through determinism

— Slaves roll back their state to time of new server
update and the replay all events back to now

— As you figure it out, use the Queue, Luke!

“Distributed” Systems Everywhere!

Multi-core machines (with NUMA)
— Fast, failure-free networks (memory, PCl Express)

“Distributed” Systems Everywhere!

 Shared-memory Threads: can model as nodes
= I\/Iemory dCCESSES are message passing

* Implemented by memory controller hardware

rl = load(10001234) r2=r1+1

=t

—

store (10001234:155) /

return (10001234:?7?)

Summary

* Modeling distributed systems as nodes
exchanging messages via queues is very useful

— This is how academics do it, for their proofs!

e Shared state is the canonical hard problem for

distributed systems

— We've seen the top of the iceberg today. Add partial failures, partial
subscriptions, partitioned servers, dynamic migration ...

e MMOs are special, but not all that special
— Yet to successfully apply knowledge from DB/Distr

