

### Quick Introduction to Simulink

By:

#### **Arash Sheikhlar**

1

## What is Simulink:

Simulink is a MATLAB-based graphical programming environment for: **Modeling**, **Simulating**, and **Analyzing** dynamical systems.

# Usage:

- Designing Model-Based Control Systems
- Automation
- Digital Signal Processing

"Example isn't another way to teach, it is the only way to teach." - Albert Einstein

As a simple example of dynamic systems:

Assume that we have a system with the following equation:

 $\dot{x}(t) + 10x(t) = u(t)$ 

u(t): input x(t): output  $\dot{x}(t)$ : dx/dt x(0)= -10, initial value of x(t)



$$\dot{x}(t) + 10x(t) = u(t)$$

$$u(t) : \text{ input}$$

$$x(t) : \text{ output}$$

$$\dot{x}(t) : dx/dt$$

$$x(0) = -10, \text{ initial value of } x(t)$$

**Inputs**: We can give the system several types of signals as the input:



**Connections**: Conncet the elements by drawing lines!

Add block: Add signals via "Sum" block: X+\_

**Gains**: Give weight to the signals/connections by "gain"s:

**Scopes:** How to observe the signals in time:







#### Integrator

The most **integral** element of building dynamic models:

Why???



|                         | Time domain             | s domain          |
|-------------------------|-------------------------|-------------------|
| Time-domain integration | $\int_0^t f(	au)  d	au$ | $\frac{1}{s}F(s)$ |

When you have initial values, put it into the integral block.

### **MATLAB** function

Don't forget to use MATLAB function when the Simulink does not provide you the desired block/function (or even when you don't find it)

This block contains one/multiple input(s) and one/multiple output(s). Write the code and generate your outputs.



The Simulink block diagram, the input and the output will be something like this:





