
0

Intelligence as a Category

Human intelligence

Computer intelligence

Intelligence Animal intelligence

Collective intelligence

Alien intelligence
1

As problem-solving
capabilities

Intelligence & Computation

As principles and
mechanisms

Intelligence

Computation

Human’s

Computer’s

AI

2

What is not Intelligent

• Innate behavior, or instinct

• Exhaustive search

• Information retrieval

• Repeated routines

• Algorithm following (numerical
calculating, sorting, fixed mapping, …)

3

A Working Definition

“Intelligence” is the capability of a system to
adapt to its environment and to work with
insufficient knowledge and resources

Assumption of Insufficient Knowledge and
Resources (AIKR):

• To rely on finite processing capacity
• To work in real time
• To open to unexpected tasks

4

Presumption of Computation

“Computation” specifies fixed input-output
mapping, which is accurately repeatable,
predictable, and terminatable

Assumption on knowledge and resources:

• The system is equipped with problem-
specific algorithms

• The time-space expenses of the
algorithms are affordable

5

Relative Rationality

• Under AIKR, no more traditional
correctness or optimality

• “Rational” becomes relative to available
knowledge and resources, so is subjective
and evolving, but not arbitrary

• AIKR makes adaptation necessary, which
is neither desired nor possible in
computational model of problem solving

6

Adaptation

• To predict the future according to the past,
though the past and the future are surely
different (Hume’s Problem)

• To relatively satisfy the (effectively)
infinite resource demand using the finite
supply, though it is never enough

• An “adaptive system” is one that tries to
adapt, though no success is guaranteed

7

Machine Learning

8

Learning and Adaptation

Computation

Learning

Adaptation Meta-adaptation

9

Hybrid

To Model Multiple Functions

Integrated Unified

10

Formal Model

The necessity of a formal model between an
informal theory and a physical realization

• Multidimensional space, vector, tensor,
trajectory, neural network, …

• Data structure and algorithm, control
structures, computational complexity, …

• Formal language and inference rules, …
11

Reasoning System Framework

• a language for representation
• a semantics of the language
• a set of inference rules
• a memory structure
• a control mechanism

Advantages:
• Domain independence
• Rich expressing power
• Justifiability of the rules
• Flexibility in combining the rules 12

Existing Issues

• Uncertainty, inconsistency, and implicity
in commonsense knowledge

• “Symbol grounding” problem

• Validity of non-deductive inference:
induction, abduction, analogy, revision, …

• Combinatorial explosion

• Integration with other cognitive functions
13

Non-Axiomatic Reasoning System

• NARS has a logic part and a control part,
with a “logic” in the original sense

• NARS is fully based on AIKR

• NARS is a normative model built on a
descriptive foundation

• NARS has a designed meta-level and an
acquired object-level

14

Meaning and Truth

• Correspondence: the “meaning” of a
symbol is the object/event it refers to; the
“truth-value” of a statement measures its
agreement with the reality

• Experience-grounded: the “meaning” of a
symbol is its experienced relation; the
“truth-value” of a statement measures its
evidential support

15

Model-Theoretic Semantics

16

Experience-Grounded Semantics

17

Representation Language

• Predicate calculus: good for theorem
proving, but unsuitable for commonsense
reasoning

• Term logic: closer to everyday thinking,
easy to extend to include compounds
terms and non-deductive rules, with
graphical interpretation, coherent with
conceptual model, …

18

Term and Statement
Term: word, as name of a concept

Statement: subject-copula-predicate

S → P

as specialization-generalization

water liquid

Copula inheritance is reflexive and transitive

19

Experience-based Truth

• Experience K: a finite set of statements

• Beliefs K*: the transitive closure of K

• A statement is true if
either it is in K*
or it has the form of X → X
otherwise it is false

20

Extension and Intension

For a given term T,
its extension TE = {x | x →T}
its intension TI = {x | T → x}

T
TE TI

Theorem:
(S → P) ⇔ (SE ⊆ PE) ⇔ (PI ⊆ SI)

21

Evidence

Positive evidence of S → P :
 {x | x ∈ (SE ∩ PE) ∪ (PI ∩ SI)}

Negative evidence of S → P :
 {x | x ∈ (SE – PE) ∪ (PI – SI)}

Amount of evidence:
 positive: w+ = |SE ∩ PE | + |PI ∩SI |
 negative: w– = |SE – PE | + |PI – SI |
 total: w = w+ + w– = |SE | + |PI |

S P

⊗

⊗⊕

⊕

22

Truth-Value Defined

In NARS, the truth-value of a statement is a
pair of real numbers in [0, 1], and measures
the evidential support to the statement.

 S → P <f, c>

 frequency: f = w+/w
 confidence: c = w / (w +1)

S P<f, c>

23

 Truth-Value Produced

• Actual experience: a stream of
statements with truth-value, where the
confidence is in (0, 1)

• Each inference rule has a truth-value
function, and the truth-value of the
conclusion is determined only by the
evidence provided by the premises

24

 Compared to Probability

Based on similar intuition, probability
theory has axioms that requires
consistent probability assignments

The confidence in NARS cannot be
interpreted as a probability in the same
sample space as the frequency

The operations are different
25

 Compared to Fuzzy Logic

Truth is a matter of degree

In fuzzy logic, degrees of membership are
purely subjective, and the operations on
them have little justification

In NARS, truth-value has an evidence-based
interpretation, by which randomness,
fuzziness, and ignorance are unified

26

Truth-value Function Design

1. Treat all involved variables as Boolean

2. For each value combination in premises,
decide the values in conclusion

3. Build Boolean functions among the variables

4. Extend the operators to real-number:

 not(x) = 1 – x
and(x, y) = x * y
 or(x, y) = 1 – (1 – x) * (1 – y) 27

Types of Inference Rules

• Local Inference: revising beliefs or
choosing an answer for a question

• Forward inference: from existing beliefs
to new beliefs (deduction, induction,
abduction, …)

• Backward inference: from existing
questions and beliefs and to derived
questions

28

Deduction

 bird → animal [1.00, 0.90]
 robin → bird [1.00, 0.90]

robin → animal [1.00, 0.81]

 M → P [f1, c1]
 S → M [f2, c2]

 S → P [f, c]

 f = and(f1, f2)
 c = and(f1, f2, c1, c2)

M

S P
29

Induction

 swan → bird [1.00, 0.90]
swan → swimmer [1.00, 0.90]

 bird → swimmer [1.00, 0.45]

 M → P [f1, c1]
 M → S [f2, c2]

 S → P [f, c]

w+ = and(f1, f2, c1, c2)
w = and(f2, c1, c2)

S

M

P

30

Abduction

seabird → swimmer [1.00, 0.90]
 gull → swimmer [1.00, 0.90]


gull → seabird [1.00, 0.45]

 P → M [f1, c1]
 S → M [f2, c2]

 S → P [f, c]

w+ = and(f1, f2, c1, c2)
w = and(f1, c1, c2)

S

M

P

31

Revision

 bird → swimmer [1.00, 0.62]
 bird → swimmer [0.00, 0.45]
 
 bird → swimmer [0.67, 0.71]

 S → P [f1, c1]
 S → P [f2, c2]
 
 S → P [f, c]

w+ = w+
1 + w+

2
w = w1 + w2

S P

32

Memory as a Network

bird

gull

swan

robinswimmer

crow

feathered_creature

[1.00, 0.90] [1.00, 0.90]

[0.
00

, 0
.90

]
 [1.00, 0.90]

[1.00, 0.90] [1.00, 0.90]
[1.00, 0.90]

[1.00, 0.90]

Cbird

[?]

[1.00, 0.45]

33

Memory Structure

• A task is either a question or a piece of
new knowledge

• A belief is accepted knowledge

• The tasks and beliefs are clustered into
concepts according to the terms

• Concepts are prioritized in the memory;
tasks and beliefs are prioritized within
each concept

34

Control Strategy

• In each step, a task interacts with a
belief according to applicable rules

• The task and belief are selected
probabilistically, biased by priority

• Factors influence the priority of an item:
its quality, its usefulness in history, and
its relevance to the current context

Non-algorithmic task processing

35

Rigidity and Flexibility

36

Rigidity vs. Flexibility

37

Architecture and Routine

38

The Layers of the Logic

IL-1

IL-9

IL-8

IL-7

IL-6

IL-5

IL-4

IL-3

IL-2

NAL-1

NAL-9

NAL-8

NAL-7

NAL-6

NAL-5

NAL-4

NAL-3

NAL-2

atomic term

derivative copulas &
compound terms

statement and
variable as term

event, goal, and
operation as term

implementation

39

Copulas & Compound Terms

Ideas from set theory:

• Variants of the inheritance copula:
similarity, instance, and property

• Compound terms: sets, intersections,
differences, products, and images

• New inference rules for comparison,
analogy, plus compound-term composition
and decomposition 40

Higher-Order Reasoning

Ideas from propositional/predicate logic:

• Copulas: implication and equivalence

• Compound statements: negation, conjunction,
and disjunction

• Conditional inferences as implication

• Variable terms as symbols

 41

NAL as a Meta-logic

NARS can represent the words, phrase, and
sentences of another language as terms

NARS can represent the inference rules of
another logic as implication statements

Natural language processing: combined syntax,
semantics, and pragmatics

Mathematical reasoning: local axiomatic
subsystem 42

Procedural Reasoning

Ideas from logic programming:

• Events as statements with temporal
relations (sequential and parallel)

• Operations as executable events, with a
sensorimotor interface

• Goals as events to be realized

• Mental operations are integrated into
the inference process 43

NARS as an agent

From question-answering to goal-achieving

Causal inference, prediction, explanation

Planning, skill acquisition, self-
programming

Self-awareness and self-control

Emotion and feeling

44

Unifications in NARS

• Fully based on AIKR

• Unified representational language

• Complete inferential power

• Reasoning as learning, planning,
perceiving, problem solving, decision
making, ...

• Using other software & hardware by
plug-and-play 45

Learning as Reasoning

• Learning (adaptation) is the long-term
effects of the inference processes

• Task processing does not follow any fixed
algorithm, but is data-driven, real-time,
lifelong, context-sensitive, and incremental

• The system uses whatever knowledge and
resources available, and provides justifiable
solutions with numerical evaluation

46

Unified Explanation

Creativity, originality, intentionality,
forecasting, interpreting, guessing,
imagining, understanding, attention,
association, forgetting, inspiration,
intuition, motivation derivation, skill
acquisition, tool using, language
acquisition, local maximization, faith
forming, communication, emotion,
aesthetics, gaming playing, self
awareness, self control, consciousness …

47

48

https://cis.temple.edu/~wangp/papers.html

NAL-1(Revision)

//Bird is a type of swimmer.

<bird --> swimmer>.

//Bird is probably not a type of swimmer.

<bird --> swimmer>. %0.10;0.60%

//Bird is very likely to be a type of swimmer.

<bird --> swimmer>. %0.87;0.91%')
49

NAL-1(Deduction)

//Bird is a type of animal.

<bird --> animal>.

//Robin is a type of bird.

<robin --> bird>.

//Robin is a type of animal.

<robin --> animal>. %1.00;0.81%'
50

NAL-1(Abduction)

// Sport is a type of competition.

<sport --> competition>.

// Chess is a type of competition.

<chess --> competition>. %0.90%

// I guess sport is a type of chess.

<sport --> chess>. %1.00;0.42%')

// I guess chess is a type of sport.

<chess --> sport>. %0.90;0.45% 51

NAL-1(Induction)

52

NAL-1(Yes/No Question)

// Bird is a type of swimmer.

<bird --> swimmer>.

// Is bird a type of swimmer?

<bird --> swimmer>?

// Bird is a type of swimmer.

<bird --> swimmer>. %1.00;0.90%

53

NAL-1(Conversion)

// Bird is a type of swimmer.

<bird --> swimmer>.

// Is swimmer a type of bird?

<swimmer --> bird>?

// I guess swimmer is a type of bird.

<swimmer --> bird>. %1.00;0.47%

54

NAL-1(“What” Question)

// Bird is a type of swimmer.

<bird --> swimmer>. %1.00;0.80%

// What is a type of swimmer?

<?x --> swimmer>?

// Bird is a type of swimmer.

<bird --> swimmer>. %1.00;0.80%'

55

NAL-1(Choice Rule)

1. The confidence values of two candidates are same

Choose the one with higher frequency

2. The frequency values of two candidates are same

Choose the one with higher confidence

3. Either of frequency or confidence is same

Choose the one with higher expectation

Truth-value version: e = c × (f − 1/2) + 1/2

56

NAL-2(Revision)

// Robin is similar to swan.

<robin <-> swan>.

// I think robin is not similar to swan.

<robin <-> swan>. %0.10;0.60%

// Robin is probably similar to swan.

<robin <-> swan>. %0.87;0.91%')

57

NAL-2(Comparison)

// Sport is a type of competition.

<sport --> competition>.

// Chess is a type of competition.

<chess --> competition>. %0.90%

// I guess chess is similar to sport.

<chess <-> sport>. %0.90;0.45%

58

NAL-2(Analogy)

// Swan is a type of swimmer.

<swan --> swimmer>.

// Gull is similar to swan.

<gull <-> swan>.

// I think gull is a type of swimmer.

<gull --> swimmer>. %1.00;0.81%'

59

NAL-2(Analogy)

// Gull is a type of swimmer.

<gull --> swimmer>.

// Gull is similar to a swan.

<gull <-> swan>.

// I believe a swan is a type of swimmer.

<swan --> swimmer>. %1.00;0.81%'

60

NAL-2(Analogy)

// Gull is a type of swimmer.

<gull --> swimmer>.

// Gull is similar to a swan.

<gull <-> swan>.

// I believe a swan is a type of swimmer.

<swan --> swimmer>. %1.00;0.81%'

61

NAL-2(Instance copula)

// Tweety is a bird.

<Tweety {-- bird>.

{Tweety} --> bird>. %1.00;0.90%

62

NAL-2(Instance copula)

// Ravens are black.

<raven --] black>.

<raven --> [black]>.

63

NAL-3(Compound Term)

A compound term (con C1, C2,...,Cn) is a term formed by
term connector, con, that connects one or more terms
C1,....,Cn (n >=1) call the component(s) of the compound

Example:

// Robin is a type of bird or type of swimmer

<robin --> (|,bird,swimmer)>.

// Robin is a type of bird and a type of swimmer

<robin --> (&,bird,swimmer)>.

// Robin is a nonswimming mammal.

<robin --> (-,mammal,swimmer)>.
64

NAL-3(Set Representation)
Definition 7.10. Given different terms T1, ... , Tn (n ≥ 2), an extensional

set {T1, ... , Tn} is defined as (U {T1} ... {Tn}); an intensional set [T1 ... Tn] is
defined as (∩ [T1] ... [Tn]).

65

NAL-3(Set operation)
// PlanetX is Mars, Pluto, or Venus.

<planetX --> {Mars,Pluto,Venus}>. %0.90%

// PlanetX is probably Pluto or Saturn.

<planetX --> {Pluto,Saturn}>. %0.70%

// PlanetX is Mars, Pluto, Saturn, or Venus.

<planetX --> {Mars,Pluto,Saturn,Venus}>. %0.97;0.81%'

// PlanetX is probably Pluto.

<planetX --> {Pluto}>. %0.63;0.81%'

66

NAL-3(Set operation)
// PlanetX is Mars, Pluto, or Venus.

<planetX --> {Mars,Pluto,Venus}>. %0.90%

// PlanetX is probably neither Pluto nor Saturn.

<planetX --> {Pluto,Saturn}>. %0.10%

// PlanetX is either Mars or Venus.

<planetX --> {Mars,Venus}>. %0.81;0.81%

67

NAL-4(Relation Terms)
// water dissolve salts

<(*, water, salt) --> dissolve>.

// water is something that dissolves salts

<water --> (/, dissolve, _ , salt)>.

// Salt is something that can be dissolved by water

<salt --> (/, dissolve, water, _)>.

68

NAL-4(Relation Terms)
// water dissolve salts

<rain --> water>.

// water is something that dissolves salts

<water --> (/, dissolve, _ , salt)>.

// Salt is something that can be dissolved by water

<(*, rain, salt) --> dissolve>.

69

NAL-4(Relation Terms)
// Neutralization is a relation between an acid and a base.

<neutralization --> (*,acid,base)>.

// Something that can neutralize a base is an acid.

<(\,neutralization,_,base) --> acid>. %1.00;0.90%

// Something that can be neutralized by an acid is a base.

<(\,neutralization,acid,_) --> base>. %1.00;0.90%

70

NAL-5(Statements as Terms)
// If robin can fly then robin is a type of bird.

<<robin --> [flying]> ==> <robin --> bird>>.

// If robin can fly then robin may not a type of bird.

<<robin --> [flying]> ==> <robin --> bird>>. %0.00;0.60%

// If robin can fly then robin is a type of bird.

<<robin --> [flying]> ==> <robin --> bird>>. %0.86;0.91%

71

NAL-5(Deduction)
// If robin is a type of bird then robin is a type of animal.

<<robin --> bird> ==> <robin --> animal>>.

// If robin can fly then robin is a type of bird.

<<robin --> [flying]> ==> <robin --> bird>>.

// If robin can fly then robin is a type of animal.

<<robin --> [flying]> ==> <robin --> animal>>. %1.00;0.81%

72

NAL-5(Detachment)
// If robin is a type of bird then robin can fly.

<<robin --> bird> ==> <robin --> animal>>.

// Robin is a type of bird.

<robin --> bird>.

// Robin is a type of animal.

<robin --> animal>. %1.00;0.81%

73

NAL-5(Analogy)
// If robin is a type of bird then robin is a type of animal.

<<robin --> bird> ==> <robin --> animal>>.

// Usually, robin is a type of bird if and only if robin can fly.

<<robin --> bird> <=> <robin --> [flying]>>. %0.80%

// If robin can fly then probably robin is a type of animal.

<<robin --> [flying]> ==> <robin --> animal>>. %0.80;0.65%

74

NAL-5(Compound composition)
// If robin is a type of bird then robin is a type of animal.

<<robin --> bird> ==> <robin --> animal>>.

// If robin can fly then robin is a type of animal.

<<robin --> [flying]> ==> <robin --> animal>>. %0.9%

// If robin can fly and is a type of bird then robin is a type of animal.

<(&&,<robin --> [flying]>,<robin --> bird>) ==> <robin --> animal>>.
%1.00;0.81%

//If robin can fly or is a type of bird then robin is a type of animal.

<(||,<robin --> [flying]>,<robin --> bird>) ==> <robin --> animal>>. %0.90;0.81%

75

NAL-5(Compound composition)
// If robin is a type of bird then robin is a type of animal.

<<robin --> bird> ==> <robin --> animal>>.

// If robin can fly then robin is a type of animal.

<<robin --> [flying]> ==> <robin --> animal>>. %0.9%

// If robin can fly and is a type of bird then robin is a type of animal.

<(&&,<robin --> [flying]>,<robin --> bird>) ==> <robin --> animal>>.
%1.00;0.81%

//If robin can fly or is a type of bird then robin is a type of animal.

<(||,<robin --> [flying]>,<robin --> bird>) ==> <robin --> animal>>. %0.90;0.81%

76

NAL-6(Variable)
\\ Every key opens every lock.

<(&&, <{$x} --> key>, <{$y} --> lock>) ==> <(*, $x, $y) --> open>>.

\\ There is a key that opens every lock

<(&&, <{#x} --> key>, <{$y} --> lock>) ==> <(*, #x, $y) --> open>>.

\\ Every key opens some lock (that depends on the key).

<(&&, <{$x} --> key>, <{#y} --> lock>) ==> <(*, $x, #y) --> open>>.

\\There is a key that opens a lock.

<(&&, <{#x} --> key>, <{#y} --> lock>) ==> <(*, #x, #y) --> open>>.

77

NAL-6(Variable Unification)
// If something is a bird, then it is a flyer.

<<$x --> bird> ==> <$x --> flyer>>.

// If something is a bird, then it is not a flyer.

<<$y --> bird> ==> <$y --> flyer>>. %0.00;0.70%

// If something is a bird, then usually, it is a flyer.

<<$1 --> bird> ==> <$1 --> flyer>>. %0.79;0.92%'

78

NAL-6(Variable Unification)
// If something is a swan, then it is a bird.

<<$x --> swan> ==> <$x --> bird>>. %1.00;0.80%

// If something is a swan, then it is a swimmer.

<<$y --> swan> ==> <$y --> swimmer>>. %0.80%

79

NAL-6(Variable Unification)
// I believe that if something is a swan, then it is a bird or a swimmer.

<<$1 --> swan> ==> (||,<$1 --> bird>,<$1 --> swimmer>)>. %1.00;0.72%

// I believe that if something is a swan, then usually, it is both a bird and a
swimmer.

<<$1 --> swan> ==> (&&,<$1 --> bird>,<$1 --> swimmer>)>. %0.80;0.72%

// I guess if something is a swimmer, then it is a bird.

<<$1 --> swimmer> ==> <$1 --> bird>>. %1.00;0.37%

// I guess if something is a bird, then it is a swimmer.

<<$1 --> bird> ==> <$1 --> swimmer>>. %0.80;0.42%

 80

NAL-6(Variable Elimination)
\\ Tweety has wings.

<{Tweety} --> [with-wings]>.

\\ If something can chirp and has wings, then it is a bird.

<(&&,<$x --> [chirping]>,<$x --> [with-wings]>) ==> <$x --> bird>>.

\\ If Tweety can chirp, then it is a bird.

<<{Tweety} --> [chirping]> ==> <{Tweety} --> bird>>. %1.00;0.81%')

81

NAL-6(Second level variable unification)

// There is a lock which is opened by all keys

(&&,<#1 --> lock>,<<$2 --> key> ==> <#1 --> (/,open,$2,_)>>). %1.00;0.90%

// key1 is a key

<{key1} --> key>. %1.00;0.90%

// there is a lock which is opened by key1

(&&,<#1 --> (/,open,{key1},_)>,<#1 --> lock>). %1.00;0.81%'

82

NAL-7(Events as Statements)

An event is a statement with a time-dependent truthvalue, that is, the

evidential support summarized in its truth-value is valid only in its duration,

which is a certain period of time between the moment the event starts and the

moment it ends

83

NAL-7(Events as Statements)

The temporal relation between two atomic events E1 and E2 has the following

three basic cases.

1. E1 happens before E2 happens

<E1 =/> E2>.

2. E1 happens after E2 happens

<E1 =\> E2>.

3. E1 happens when E2 happens

<E1 =|> E2>.

84

NAL-7(Tense for single Event)

// John entered room 101

<(*,John,room_101) --> enter>. :\:

// John is entering room 101

<(*,John,room_101) --> enter>. :|:

// John will enter room 101

<(*,John,room_101) --> enter>. :/

:

85

NAL-7(Tense for single Event)

// John entered room 101

<(*,John,room_101) --> enter>. :\:

// John is entering room 101

<(*,John,room_101) --> enter>. :|:

// John will enter room 101

<(*,John,room_101) --> enter>. :/

:

86

NAL-7(Temporal deduction/explification)

// Someone needs to open door 101 before entering room 101

<<(*, $x, room_101) --> enter> =\> <(*, $x, door_101) --> open>>. %0.9%

// Someone needs to hold the key 101 before opening door 101

<<(*, $y, door_101) --> open> =\> <(*, $y, key_101) --> hold>>. %0.8%

// Someone needs to hold the key 101 before entering room 101

<<(*,$1,room_101) --> enter> =\> <(*,$1,key_101) --> hold>>. %0.72;0.58%

// Someone needs to hold the key 101 before entering room 101

<<(*,$1,key_101) --> hold> =/> <(*,$1,room_101) --> enter>>. %1.00;0.37%

87

NAL-7(Inference on Tense)

// Before John entered room 101, John hold the key 101

<<(*,John,key_101) --> hold> =/> <(*,John,room_101) --> enter>>.

// John is holding the key 101

<(*,John,key_101) --> hold>. :|:

// John will enter room 101

<(*,John,room_101) --> enter>. :/: %1.00;0.81%'

88

NAL-8(Operations and Goals as Events)

1. An operation of NARS is an event that the system can actualize - it is true
when

a corresponding procedure is executed by the system

2. A goal is a sentence containing an event that the system

desires to realize.

89

NAL-8(Operations and Goals as Events)

1. An operation of NARS is an event that the system can actualize - it is true
when

a corresponding procedure is executed by the system

2. A goal is a sentence containing an event that the system

desires to realize.

90

NAL-8(Toothbrush)

91

// Toothbrush is made of plastic

<(*,toothbrush,plastic) --> made_of>.

// If something is made of plastic and we use the lighter to it, this thing will be

// heated

<(&/,<(*,$1,plastic) --> made_of>,(^lighter,{SELF},$1)) =/> <$1 --> [heated]>>.

// If something is heated then this thing will be melted

<<$1 --> [heated]> =/> <$1 --> [melted]>>.

// If something is melted, at the same time it becomes pliable

<<$1 --> [melted]> <|> <$1 --> [pliable]>>.

NAL-8(Toothbrush)

92

// If I reshape something pliable, it will be hardened

<(&/,<$1 --> [pliable]>,(^reshape,{SELF},$1)) =/> <$1 --> [hardened]>>.

// If something is hardened it becomes unscrewing

<<$1 --> [hardened]> =|> <$1 --> [unscrewing]>>.

// Toothbrush is an object

<toothbrush --> object>.

// I want an unscrewing object

(&&,<#1 --> object>,<#1 --> [unscrewing]>)!

10000

NAL-8(Toothbrush)

93

// I have a goal which is to use lighter to the toothbrush

(^lighter,{SELF},toothbrush)! %1.00;0.18%

// I have another goal which is to reshape the toothbrush

(^reshape,{SELF},toothbrush)! %1.00;0.06%

Emotion

94

//If something is wanted by SELF, and SELF anticipates the
//opposite to happen, SELF feels fear

Input:<(&&, (^want, {SELF}, #1, FALSE), (^anticipate, {SELF}, #1)) =|> (^feel, {SELF},
fear)>.

//At the same time when SELF feels fear, it generate an
//motivation which to run away, run is also an operator in NARS

Input: <(^feel,{SELF}, fear) =|> <(*, {SELF}, <(*, {SELF}) --> ^run>) --> ^want>>.

//SELF doesn't want to be hurt

Input: (--,<{SELF} --> hurt>)!

//If wolf is getting close to SELF, SELF will get hurt

Input: <(&/,<(*, {SELF}, wolf) --> close_to>,+42) =/> <{SELF} --> [hurt]>>.

Emotion

95

//Wolf is getting close to self

Input: <(*, {SELF}, wolf) --> close_to>. :|:

//Result: SELF takes the action run, based on the knowledge
//where SELF runs when it feels fear, SELF also feels the emotion
//fear

EXECUTE (^run,{SELF})

