
ATAI-720-2020 Assignment 3

Summary of results and general remarks

Intro to ONA
We have a few different examples, they will be uploaded to the cadia wiki after this
session. They include:

A home, a coffee, a car, a screwdriver and some animals.

Plain Vanilla
ONA learns differently than the AC.

At first no success, then sudden increase to over 1000 iterations per episode.

For all of you this graph looked identical

-> deterministic

Why is ONA deterministic - Or rather why isn’t the AC?

Plain Vanilla
No exploration-exploitation dilemma, ONA does reasoning instead of
trial-and-error learning!

-> No random actions chosen

Hidden variables

Hidden variables
Again all runs deterministic

With x or v hidden it just takes
longer to learn

With theta hidden close to no
learning

With omega hidden still
averaging around 300
iterations per episode (Better
than the win condition of 200
iterations over 100 episodes)

Hidden variables
Which variables are most important for learning the task for ONA?

How does this compare to the AC?

How does this compare to the human learner?

Hidden variables
Apparently Theta more important than Omega

For the AC Omega was more important

Most humans (most of you) intuitively look for theta - rather than omega

Sudden availability
Theta

Omega

Sudden availability
X and V have close to no impact on the performance.

After being exposed to theta and omega it takes a few episodes before it reaches
the vanilla performance.

After disappearance it drops back to previous performance.

Why can’t ONA use acquired “policy” after exposed variables are hidden again?

Did you have a look at the code? How is information passed to ONA?

Sudden availability
ot = "ot"
vx = "vx"
self.observables =
 list(self.env.state_space.observables.keys())
if "omega" in self.observables:
 pos = self.observables.index("omega")
 if abs(state[0][pos] < 0.3):
 ot += '1'
 elif state[0][pos] < 0:
 ot += '2'
 elif state[0][pos] > 0:
 ot += '3'

if "theta" in self.observables:
 pos = self.observables.index("theta")
 if 0 < state[0][pos] < 0.3:
 ot += '1'
 elif -0.3 < state[0][pos] < 0:
 ot += '2'
 elif state[0][pos] < 0:
 ot += '3'
 elif state[0][pos] > 0:
 ot += '4'

if "v" in self.observables:
 pos = self.observables.index("v")
 if abs(state[0][pos]) < 0.3:
 vx += '1'
 elif state[0][pos] < 0:
 vx += '2'
 elif state[0][pos] > 0:
 vx += '3'

if "x" in self.observables:
 pos = self.observables.index("x")
 if abs(state[0][pos]) < 0.1:
 vx += '1'
 elif state[0][pos] < 0:
 vx += '2'
 elif state[0][pos] > 0:
 vx += '3'
return ot, vx

The value passed actually changes, ONA
sees this as strings, not as values therefore
no connection between the two different
settings

Sudden disappearance
Same as sudden availability, just inverted.

Some of you had different results for this -
Was this due to misunderstandings? Or is
ONA not deterministic in this case? Really
wondering!

Custom tasks
Inversion

Uneven F

Also: Gravity increase, Pole mass increase etc. All of them with expectable
outcomes.

Own ideas
Noise vs hidden

ONA did not perform worse than with
hidden variables for x, v, and theta, but
performed worse with random omega,
than with hidden omega.

And many more - like inference steps,
change of “bad” reward, etc.

Conclusion
What can we conclude on in regards of learning in the AC, the human, and ONA?

Let’s discuss the following points:

Reliability, learning speed, cumulative learning, adaptability, generality, autonomy.

