

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

Advanced Topics in Artificial Intelligence
T-720-ATAI-2016

EXERCISE 5 (Final Project)

In the final programming exercise of this course you will pair up to do some seed

programming and teaching of an AGI-aspiring cognitive architecture (NARS).

Download OpenNARS

OpenNARS is an open source implementation of NARS. Download version 1.7.0 from

https://drive.google.com/folderview?id=0B8Z4Yige07tBUk5LSUtxSGY0eVk&usp=sharing

. Note that you can also download the source code here, but if you’re going to do that, it

might be better to get it from GitHub: ​https://github.com/opennars/opennars​. You will

not need the source code for this exercise, but you should probably check out the wiki:

https://github.com/opennars/opennars/wiki​.

When you have unzipped the file, run OpenNARS_GUI.jar to start the program and

start the interactive session by clicking the OpenNARS button. Resetting the memory

does not appear to work, so if you want that, you’ll have to restart the program.

To enter a sentence, press Ctrl + Enter. Documentation about an older but similar

interface is here: ​https://github.com/opennars/opennars/wiki/Graphical-User-Interface​.
The Narsese grammar is here:

https://github.com/opennars/opennars/wiki/Input-Output-Format​.

Tip: You can’t copy text that you’ve typed into the OpenNARS GUI. It is probably a good

idea to write your commands somewhere else and then paste them into the GUI, so that

you don’t lose any work.

Your final project

The final programming assignment of this course is a bit different from the earlier

ones. Due to the size, we ask you to pair up in order to somewhat mitigate the

workload. This assignment is very open, and we will only give you fairly high level

descriptions of the tasks that you should make NARS learn:

1

Kristinn R. Thórisson & Jordi Bieger

https://drive.google.com/folderview?id=0B8Z4Yige07tBUk5LSUtxSGY0eVk&usp=sharing
https://github.com/opennars/opennars
https://github.com/opennars/opennars/wiki
https://github.com/opennars/opennars/wiki/Graphical-User-Interface
https://github.com/opennars/opennars/wiki/Input-Output-Format

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

- Diagnosing, treating and preventing disease

- Dealing with numbers

- Natural language processing

- Game playing

There are roughly two different ways in which NARS can acquire a piece of knowledge:

you can tell it directly, or the system can learn it. In this assignment, you will do both.

In the first stage, you should think about the rules you want NARS to have. Then in the

second stage, you'll start from the bare minimum and try to teach NARS as many

interesting rules as possible by giving examples and asking questions. Example:

Part 1:
// transitivity: if x < y && y < z then x < z
<(&&, <$x ­­> (/, smaller, _, $y)>, <$y ­­> (/, smaller, _, $z)>) ==> <$x ­­>
(/, smaller, _, $z)>>.
<A ­­> (/, smaller, _, B)>.
<B ­­> (/, smaller, _, E)>.
<A ­­> (/, smaller, _, E)>?

Part 2:
<A ­­> (/, smaller, _, B)>.
<A ­­> (/, smaller, _, C)>.
<A ­­> (/, smaller, _, D)>.
//<A ­­> (/, smaller, _, E)>.
<B ­­> (/, smaller, _, C)>.
<B ­­> (/, smaller, _, D)>.
<B ­­> (/, smaller, _, E)>.
<C ­­> (/, smaller, _, D)>.
<C ­­> (/, smaller, _, E)>.
<D ­­> (/, smaller, _, E)>.
<A ­­> (/, smaller, _, E)>?
<(&&, <$x ­­> (/, smaller, _, $y)>, <$y ­­> (/, smaller, _, $z)>) ==> <$x ­­>
(/, smaller, _, $z)>>? // this is actually too complex to learn

Game playing

In this assignment you’re going to teach NARS about playing a made-up tile-based

role-playing game. The game has NPCs, weapons, armor, keys and chests (and

whatever else you want). The protagonist can move to the location of any of these

things to interact with them. Loose items can be picked up. Chests can be opened with

the appropriate keys. Enemies can be hit with a weapon that you own, but they can

2

Kristinn R. Thórisson & Jordi Bieger

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

also hit you. You can define different weapon and armor types that are strong/weak

against each other (influencing the probability of a one-hit-kill). When chests are

opened or NPCs are vanquished, you can pick up their items.

You can also make some NPCs friendly, so they won’t attack you and will just

give/trade their items if you ask (which you should make preferable). You can add

properties to tell beforehand whether an NPC is friendly. You can also make things like

properties, chest contents, NPC’s items, weapons and armor partially observable and

define actions (e.g. “look”) to gather more information.

All actions take time. One goal should be to avoid dying, while another goal could be

acquiring an item, opening a chest or vanquishing an enemy. Maybe you want to open

chest1, for which you need key1, which is carried by npc1, who also has a blunt

weapon (e.g. a club) and padded armor (strong vs. blunt), so you need a sword

(slashing) and your own padded armor, etc. This way you can see there’s a whole

sequence of actions that the player would need to complete.

Programming Narsese

You should first consider what knowledge and rules the system should eventually

have. Define these rules in Narsese. Work incrementally, start simple, and continually

test your rules. For instance, if you define the transitivity rule above, then you should

test it out with some concrete instances. Next, you could define the non-symmetry rule

<<(*, smaller, $x, $y)> <=> (­­, <(*, smaller, $y, $x)>)>.​, test that out, and then

test the combination.

Document your code extremely well. Say what you're doing and why. Record the time

steps at which you're putting things into the system, and the timesteps (and truth

values) of answers to questions and actions. It may be difficult to get NARS to do very

complicated, many-step, many-variable inferences. It may help to break things up into

more, smaller inference chains. If you can't get NARS to do something, report what you

did, what you expected, what really happened and what you think the problem is.

You have quite a bit of freedom in this assignment. Make sure that you use all 8 levels

of NAL, as well as judgments, questions and goals. You’re encouraged to

Teaching NARS

Now that you have an idea of the knowledge NARS should learn, think about how you

3

Kristinn R. Thórisson & Jordi Bieger

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

could teach these things if you could not directly encode them. Use as little starting

knowledge as possible, and then use examples and questions to teach these concepts.

Again, you should start simple, and you don’t have to take this all the way up to the

most complex rules. If you can’t get NARS to learn a general rule (such as transitivity

above), then at least see if you can get it to generalize to some other examples. Try

using shaping/chaining and the Socratic method to nudge NARS in the right direction

and allow it to make smaller steps. If you can’t get it to work, do the same as above:

document what you tried, why/how you thought it would work, what really happened

and what you think the problem is. In some cases you may want to write a separate

program to generate a lot of input data for NARS to learn from (e.g. disease/symptom

data for a lot of people, summation outcomes for a lot of numbers, a lot of sentences, or

a lot of game enemy encounters).

Submit your solutions

Submit a zip file named “ex5_” followed by your names “.zip”. Include all files that you

wrote for this exercise. Depending on how you work, it may be a single text file with

the Narsese code and lots of comments, or a main file (pdf/docx/txt) where you

describe what you did and one or more Narsese files that you refer to. Please write

your full name and kennitala into the file. Submit it in MySchool.

4

Kristinn R. Thórisson & Jordi Bieger

